Mark Scheme 4754
 June 2005

1. (a) Please mark in red and award part marks on the right side of the script, level with the work that has earned them.
(b) If a part of a question is completely correct, or only one accuracy mark has been lost, the total mark or slightly reduced mark should be put in the margin at the end of the section, shown as, for example, 7 or $7-1$, without any ringing. Otherwise, part marks should be shown as in the mark scheme, as M1, A1, B1, etc.
(c) The total mark for the question should be put in the right hand margin at the end of each question, and ringed.
2. Every page of the script should show evidence that it has been assessed, even if the work has scored no marks.
3. Do not assume that, because an answer is correct, so is the intermediate working; nor that, because an answer is wrong, no marks have been earned.
4. Errors, slips, etc. should be marked clearly where they first occur by underlining or ringing. Missing work should be indicated by a caret (\wedge).

- For correct work, use \checkmark,
- For incorrect work, use X,
- For correct work after and error, use \checkmark
- For error in follow through work, use $\begin{aligned} & \\ & \end{aligned}$

5. An ' M ' mark is earned for a correct method (or equivalent method) for that part of the question. A method may contain incorrect working, but there must be sufficient evidence that, if correct, it would have given the correct answer.

An ' A ' mark is earned for accuracy, but cannot be awarded if the corresponding M mark has not been earned. An A mark shown as A1 f.t. or A1 \checkmark shows that the mark has been awarded following through on a previous error.

A ' B ' mark is an accuracy mark awarded independently of any M mark.
' E ' marks are accuracy marks dependent on an M mark, used as a reminder that the answer has been given in the question and must be fully justified.
6. If a question is misread or misunderstood in such a way that the nature and difficulty of the question is unaltered, follow the work through, awarding all marks earned, but deducting one mark once, shown as MR - 1, from any accuracy or independent marks earned in the affected work. If the question is made easier by the misread, then deduct more marks appropriately.
7. Mark deleted work if it has not been replaced. If it has been replaced, ignore the deleted work and mark the replacement.
8. Other abbreviations:
c.a.o. : correct answer only
b.o.d. : benefit of doubt (where full work is not shown)

X
: work of no mark value between crosses
χ
s.o.i. : seen or implied
s.c. : special case (as defined in the mark scheme)
w.w.w : without wrong working

Procedure

1. Before the Examiners' Meeting, mark at least 10 scripts of different standards and bring them with you to the meeting. List any problems which have occurred or that you can foresee.
2. After the meeting, mark 7 scripts and the 3 photocopied scripts provided and send these to your team leader. Keep a record of the marks, and enclose with your scripts a stamped addressed envelope for their return. Your team leader will contact you by telephone or email as soon as possible with any comments. You must ensure that the corrected marks are entered on to the mark sheet.
3. By a date agreed at the standardisation meeting prior to the batch 1 date, send a further sample of about 40 scripts, from complete centres. You should record the marks for these scripts on your marksheets. They will not be returned to you, but you will receive feedback on them. If all is well, you will then be given clearance to send your batch 1 scripts and marksheets to Cambridge.
4. Towards the end of the marking period, your team leader will request a final sample of about 60 scripts. This sample will consist of complete centres and will not be returned to you. The marks must be entered on the mark sheets before sending the scripts, and should be sent, with the remainder of your marksheets, to the office by the final deadline.
5. Please contact your team leader by telephone or email in case of difficulty. Contact addresses and telephone numbers will be found in your examiner packs.

SECTION A

1 $\begin{aligned} & 3 \cos \theta+4 \sin \theta=R \cos (\theta-\alpha) \\ & \quad=R(\cos \theta \cos \alpha+\sin \theta \sin \alpha) \\ & \Rightarrow R \cos \alpha=3, R \sin \alpha=4 \\ & \Rightarrow R^{2}=3^{2}+4^{2}=25, R=5 \\ & \tan \alpha=4 / 3 \Rightarrow \alpha=0.927 \\ & \mathrm{f}(\theta)=7+5 \cos (\theta-0.927) \end{aligned}$ $\Rightarrow \quad$ Range is 2 to 12 Greatest value of \qquad 1 is $1 / 2$.	B1 M1 A1 M1 A1 B1ft [6]	$R=5$ $\tan \alpha=4 / 3$ oe ft their R 0.93 or 53.1° or better their $\cos (\theta-0.927)=1$ or -1 used (condone use of graphical calculator) 2 and 12 seen cao simplified
$2 \quad \begin{aligned} & \sqrt{4+2 x}=2\left(1+\frac{1}{2} x\right)^{\frac{1}{2}} \\ & =2\left\{1+\frac{1}{2} \cdot\left(\frac{1}{2} x\right)+\frac{\frac{1}{2} \cdot\left(-\frac{1}{2}\right)}{2!}\left(\frac{1}{2} x\right)^{2}+\frac{\frac{1}{2} \cdot\left(-\frac{1}{2}\right) \cdot\left(-\frac{3}{2}\right)}{3!}\left(\frac{1}{2} x\right)^{3}+\ldots\right\} \\ & =k\left(1+\frac{1}{4} x-\frac{1}{32} x^{2}+\frac{1}{128} x^{3}+\ldots\right) \\ & =\left(2+\frac{1}{2} x-\frac{1}{16} x^{2}+\frac{1}{64} x^{3}+\ldots\right) \end{aligned}$ Valid for $-2<x<2$.	M1 M1 A2,1,0 A1cao B1cao [6]	Taking out 4 oe correct binomial coefficients $\frac{1}{4} x,-\frac{1}{32} x^{2},+\frac{1}{128} x^{3}$
$\begin{array}{ll} \mathbf{3} & \sec ^{2} \theta=4 \\ \Rightarrow & \frac{1}{\cos ^{2} \theta}=4 \\ \Rightarrow & \cos ^{2} \theta=1 / 4 \\ \Rightarrow & \cos \theta=1 / 2 \text { or }-1 / 2 \\ \Rightarrow & \theta=\pi / 3,2 \pi / 3 \end{array}$ OR $\begin{aligned} & \sec ^{2} \theta=1+\tan ^{2} \theta \\ & \Rightarrow \quad \tan ^{2} \theta=3 \\ & \Rightarrow \quad \tan \theta=\sqrt{ } 3 \text { or }-\sqrt{ } 3 \\ & \Rightarrow \quad \theta=\pi / 3,2 \pi / 3 \end{aligned}$	M1 M1 A1 A1 M1 M1 A1 A1 [4]	$\sec \theta=1 / \cos \theta$ used $\pm 1 / 2$ allow unsupported answers $\pm \sqrt{ } 3$ allow unsupported answers

4 $\begin{aligned} V & =\int \pi y^{2} d x \\ & =\int_{0}^{1} \pi\left(1+e^{-2 x}\right) d x \\ & =\pi\left[x-\frac{1}{2} e^{-2 x}\right]_{0}^{1} \\ & =\pi\left(1-1 / 2 \mathrm{e}^{-2}+1 / 2\right) \\ & =\pi\left(11 / 2-1 / 2 \mathrm{e}^{-2}\right) \end{aligned}$	M1 M1 B1 M1 A1 [5]	Correct formula $\begin{aligned} & k \int_{0}^{1}\left(1+e^{-2 x}\right) d x \\ & {\left[x-\frac{1}{2} e^{-2 x}\right]} \end{aligned}$ substituting limits. Must see 0 used. Condone omission of π o.e. but must be exact
$5 \begin{array}{ll} & 2 \cos ^{2} x=2\left(2 \cos ^{2} x-1\right)=4 \cos ^{2} x-2 \\ \Rightarrow & 4 \cos ^{2} x-2=1+\cos x \\ \Rightarrow & 4 \cos ^{2} x-\cos x-3=0 \\ \Rightarrow & (4 \cos x+3)(\cos x-1)=0 \\ \Rightarrow & \left.\begin{array}{c} \cos x=-3 / 4 \text { or } 1 \\ \Rightarrow \end{array} \quad \begin{array}{c} x=138.6^{\circ} \text { or } 221.4^{\circ} \\ \\ \\ \\ \\ \end{array}\right) . \end{array}$	M1 M1 M1dep A1 B1 B1 B1 [7]	Any double angle formula used getting a quadratic in $\cos x$ attempt to solve for $-3 / 4$ and 1 139,221 or better www -1 extra solutions in range
$6 \text { (i) } \begin{aligned} y^{2}-x^{2} & =(t+1 / t)^{2}-(t-1 / t)^{2} \\ & =t^{2}+2+1 / t^{2}-t^{2}+2-1 / t^{2} \\ & =4 \end{aligned}$	M1 E1 [2]	Substituting for x and y in terms of t oe
$\begin{aligned} & \text { (ii) EITHER } \begin{aligned} & \mathrm{d} x / \mathrm{d} t=1+1 / t^{2}, \mathrm{~d} y / \mathrm{d} t=1-1 / t^{2} \\ & \Rightarrow \quad \frac{d y}{d x}=\frac{d y / d t}{d x / d t} \\ &=\frac{1-1 / t^{2}}{1+1 / t^{2}} \\ &=\frac{t^{2}-1}{t^{2}+1}=\frac{(t-1)(t+1)}{t^{2}+1} * \\ & \text { OR } \quad 2 y \frac{d y}{d x}-2 x=0 \end{aligned} \\ & \Rightarrow \quad \begin{array}{l} \frac{d y}{d x}=\frac{x}{y}=\frac{t-1 / t}{t+1 / t} \\ \\ =\frac{t^{2}-1}{t^{2}+1}=\frac{(t-1)(t+1)}{t^{2}+1} \end{array} \end{aligned}$	B1 M1 E1 B1 M1 E1	For both results
$\begin{aligned} & \text { OR } \begin{aligned} y & =\sqrt{ }\left(4+x^{2}\right), \\ \Rightarrow \quad \frac{d y}{d x} & =\frac{x}{\sqrt{4+x^{2}}} \\ & =\frac{t-1 / t}{\sqrt{4+t^{2}-2+1 / t^{2}}} \\ & =\frac{t-1 / t}{\sqrt{\left(t+1 / t^{2}\right)}}=\frac{t-1 / t}{(t+1 / t)} \\ & =\frac{t^{2}-1}{t^{2}+1}=\frac{(t-1)(t+1)}{t^{2}+1} \end{aligned} \\ & \Rightarrow \quad \begin{array}{l} \mathrm{d} y / \mathrm{d} x=0 \text { when } t=1 \text { or }-1 \\ t=1, \Rightarrow(0,2) \\ t=-1 \Rightarrow(0,-2) \end{array} \end{aligned}$	B1 M1 E1 M1 A1 A1 [6]	

SECTION B

7 (i) $\int \frac{t}{1+t^{2}} d t=1 / 2 \ln \left(1+t^{2}\right)+c$ OR $\int \frac{t}{1+t^{2}} d t$ let $u=1+t^{2}, \mathrm{~d} u=2 t \mathrm{~d} t$ $\begin{aligned} & =\int \frac{1 / 2}{u} d u \\ & =1 / 2 \ln u+c \\ & =1 / 2 \ln \left(1+t^{2}\right)+c \end{aligned}$	M1 A2 M1 A1 A1 [3]	$\begin{aligned} & k \ln \left(1+t^{2}\right) \\ & 1 / 2 \ln \left(1+t^{2}\right)[+c] \\ & \text { substituting } u=1+t^{2} \end{aligned}$ condone no c
(ii) $\begin{aligned} & \quad \frac{1}{t\left(1+t^{2}\right)}=\frac{A}{t}+\frac{B t+C}{1+t^{2}} \\ & \Rightarrow \quad 1=A\left(1+t^{2}\right)+(B t+C) t \\ & t=0 \Rightarrow 1=A \\ & \text { coeff of } t^{2} \quad \Rightarrow 0=A+B \\ & \\ & \text { coeff of } t \quad \Rightarrow=-1 \\ & \Rightarrow \quad \frac{1}{t\left(1+t^{2}\right)}=\frac{1}{t}-\frac{t}{1+t^{2}} \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { A1 } \\ \\ \hline \end{array}$	$\begin{aligned} & \text { Equating numerators } \\ & \text { substituting or equating coeffts dep } 1^{\text {st }} \text { M1 } \\ & A=1 \\ & B=-1 \\ & C=0 \end{aligned}$
$\begin{array}{cc} \text { (iii) } & \frac{\mathrm{d} M}{\mathrm{~d} t}=\frac{M}{t\left(1+t^{2}\right)} \\ \Rightarrow & \int \frac{1}{M} d M=\int \frac{1}{t\left(1+t^{2}\right)} d t=\int\left[\frac{1}{t}-\frac{t}{1+t^{2}}\right] d t \\ \Rightarrow & \ln M=\ln t-1 / 2 \ln \left(1+t^{2}\right)+c \\ & =\ln \left(\frac{e^{c} t}{\sqrt{1+t^{2}}}\right) \\ \Rightarrow & M=\frac{K t}{\sqrt{1+t^{2}}} * \text { where } K=\mathrm{e}^{c} \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1ft } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { E1 } \\ & {[6]} \end{aligned}$	Separating variables and substituting their partial fractions $\ln M=\ldots$ $\ln t-1 / 2 \ln \left(1+t^{2}\right)+c$ combining $\ln t$ and $1 / 2 \ln \left(1+t^{2}\right)$ $K=\mathrm{e}^{c} \quad$ o.e.
(iv) $\begin{aligned} & t=1, M=25 \Rightarrow 25=K / \sqrt{ } 2 \\ & \Rightarrow \quad K=25 \sqrt{ } 2=35.36 \\ & \text { As } t \rightarrow \infty, M \rightarrow K \end{aligned}$ So long term value of M is 35.36 grams	M1 A1 M1 A1ft [4]	$25 \sqrt{ } 2$ or 35 or better soi ft their K.
$\begin{array}{\|ll} \mathbf{8} \text { (i) } & \mathrm{P} \text { is }(0,10,30) \\ & \mathrm{Q} \text { is }(0,20,15) \\ & \mathrm{R} \text { is }(-15,20,30) \\ \Rightarrow & \overline{\mathrm{PQ}}=\left(\begin{array}{l} 0-0 \\ 20-10 \\ 15-30 \end{array}\right)=\left(\begin{array}{c} 0 \\ 10 \\ -15 \end{array}\right) * \end{array}$	$\begin{aligned} & \text { B2,1,0 } \\ & \text { E1 } \end{aligned}$	
$\Rightarrow \quad \overline{\mathrm{PR}}=\left(\begin{array}{c} -15-0 \\ 20-10 \\ 30-30 \end{array}\right)=\left(\begin{array}{l} -15 \\ 10 \\ 0 \end{array}\right) *$	$\begin{aligned} & \text { E1 } \\ & {[4]} \end{aligned}$	

$\left.\begin{array}{rl} \text { (ii) } & \left(\begin{array}{l} 2 \\ 3 \\ 2 \end{array}\right) \cdot\left(\begin{array}{l} 0 \\ 10 \\ -15 \end{array}\right)=0+30-30=0 \\ \Rightarrow \quad\left(\begin{array}{l} 2 \\ 3 \\ 2 \end{array}\right) \cdot\left(\begin{array}{l} -15 \\ 2 \\ 3 \\ 0 \end{array}\right) \text { is normal to the plane } \\ 2 \end{array}\right)=-30+30+0=0 .$	M1 E1 M1 M1dep A1 cao [5]	Scalar product with 1 vector in the plane OR vector x product oe $2 x+3 y+2 z=c$ or an appropriate vector form substituting to find c or completely eliminating parameters
(iii) S is $\begin{aligned} & \mathrm{S} \text { is } \quad\left(-7 \frac{1}{2}, 20,22 \frac{1}{2}\right) \\ & \overrightarrow{\mathrm{OT}}=\overrightarrow{\mathrm{OP}}+\frac{2}{3} \overrightarrow{\mathrm{PS}} \\ & =\left(\begin{array}{l} 0 \\ 10 \\ 30 \end{array}\right)+\frac{2}{3}\left(\begin{array}{l} -7 \frac{1}{2} \\ 10 \\ -7 \frac{1}{2} \end{array}\right)=\left(\begin{array}{l} -5 \\ 16 \frac{2}{3} \\ 25 \end{array}\right) \end{aligned}$ So T is $\left(-5,16 \frac{2}{3}, 25\right)^{*}$	B1 M1 A1ft E1 [4]	Or $\quad \frac{1}{3}(\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OR}}+\overrightarrow{\mathrm{OQ}})$ oe ft their S Or $\quad \frac{1}{3}\left(\begin{array}{l}0 \\ 10 \\ 30\end{array}\right)+\frac{2}{3}\left(\begin{array}{l}-7 \frac{1}{2} \\ 20 \\ 22 \frac{1}{2}\end{array}\right)$ ft their S
(iv) $\quad \mathbf{r}=\left(\begin{array}{l}-5 \\ 16 \frac{2}{3} \\ 25\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 3 \\ 2\end{array}\right)$ At C ($-30,0,0$): $-5+2 \lambda=-30,16 \frac{2}{3}+3 \lambda=0,25+2 \lambda=0$ $1^{\text {st }}$ and $3^{\text {rd }}$ eqns give $\lambda=-12 \frac{1}{2}$, not compatible with $2^{\text {nd }}$. So line does not pass through C.	$\begin{aligned} & \text { B1,B1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \\ & \text { [5] } \end{aligned}$	$\left(\begin{array}{l} -5 \\ 16 \frac{2}{3} \\ 25 \end{array}\right)+\ldots \ldots+\lambda\left(\begin{array}{l} 2 \\ 3 \\ 2 \end{array}\right)$ Substituting coordinates of C into vector equation At least 2 relevant correct equations for λ oe www

COMPREHENSION

1. The masses are measured in units. The ratio is dimensionless	B1 B1 [2]	
2. Converting from base 5 , $\begin{aligned} & 3.03232=3+\frac{0}{5}+\frac{3}{5^{2}}+\frac{2}{5^{3}}+\frac{3}{5^{4}}+\frac{2}{5^{5}} \\ & =3.14144 \end{aligned}$	M1 A1 [2]	
3.	B1	Condone variations in last digits
4. $\begin{gathered} \frac{\phi}{1}=\frac{1}{\phi-1} \\ \Rightarrow \phi^{2}-\phi=1 \Rightarrow \phi^{2}-\phi-1=0 \end{gathered}$ Using the quadratic formula gives $\phi=\frac{1 \pm \sqrt{5}}{2}$	M1 E1	Or complete verification B2
5. $\begin{aligned} & \frac{1}{\phi}=\frac{1}{\frac{1+\sqrt{5}}{2}}=\frac{2}{1+\sqrt{5}} \\ & =\frac{2}{\sqrt{5}+1} \times \frac{\sqrt{5}-1}{\sqrt{5}-1} \\ & =\frac{2(\sqrt{5}-1)}{(\sqrt{5})^{2}-1}=\frac{2(\sqrt{5}-1)}{4}=\frac{\sqrt{5}-1}{2} \end{aligned}$ OR $\begin{aligned} & \frac{1}{\phi}=\phi-1 \\ & =\frac{\sqrt{5}+1}{2}-1=\frac{\sqrt{5}-1}{2} \end{aligned}$	M1 M1 E1 M1 M1 E1 [3]	Must discount \pm Must discount \pm Substituting for ϕ and simplifying

Mark Scheme 4754
January 2006

Section A

$\begin{array}{ll} 1 & \frac{2 x}{x-2}-\frac{4 x}{x+1}=3 \\ \Rightarrow & 2 x(x+1)-4 x(x-2)=3(x-2)(x+1) \\ \Rightarrow & 2 x^{2}+2 x-4 x^{2}+8 x=3 x^{2}-3 x-6 \\ \Rightarrow & 0=5 x^{2}-13 x-6 \\ & =(5 x+2)(x-3) \\ \Rightarrow & x=-2 / 5 \text { or } 3 . \end{array}$	M1 M1 A1 M1 A1 cao [5]	Clearing fractions expanding brackets oe factorising or formula
When $t=2, \mathrm{dy} / \mathrm{d} x=\frac{1+\frac{1}{2}}{1-\frac{1}{2}}=3$	B1 M1 A1 M1 A1 [5]	Either $\mathrm{d} x / \mathrm{d} t$ or $\mathrm{d} y / \mathrm{d} t$ soi www
$\begin{aligned} & 3 \quad \overrightarrow{B A}=\left(\begin{array}{l} -4 \\ 1 \\ -3 \end{array}\right), \overrightarrow{B C}=\left(\begin{array}{l} 2 \\ 5 \\ -1 \end{array}\right) \\ & \begin{aligned} & \overrightarrow{B A} \cdot \overrightarrow{B C}=\left(\begin{array}{l} -4 \\ 1 \\ -3 \end{array}\right) \cdot\left(\begin{array}{l} 2 \\ 5 \\ -1 \end{array}\right)=(-4) \times 2+1 \times 5+(-3) \times(-1) \\ &==-8+5+3=0 \\ & \Rightarrow \text { angle } \mathrm{ABC}=90^{\circ} \end{aligned} \\ & \begin{aligned} & \text { Area of triangle }=1 / 2 \times \mathrm{BA} \times \mathrm{BC} \\ &=\frac{1}{2} \times \sqrt{(-4)^{2}+1^{2}+3^{2}} \times \sqrt{2^{2}+5^{2}+(-1)^{2}} \\ &=1 / 2 \times \sqrt{26} \times \sqrt{30} \\ &=13.96 \mathrm{sq} \mathrm{units} \end{aligned} \end{aligned}$	B1 M1 A1 M1 M1 A1 [6]	soi , condone wrong sense scalar product $=0$ area of triangle formula oe length formula accept 14.0 and $\sqrt{ } 195$

4(i) $2 \sin 2 \theta+\cos 2 \theta=1$		
$\Rightarrow \quad 4 \sin \theta \cos \theta+1-2 \sin ^{2} \theta=1$	M1	Using double angle formulae
$\Rightarrow 2 \sin \theta(2 \cos \theta-\sin \theta)=0$ or $4 \tan \theta-$	A1	Correct simplification to factorisable
$2 \tan ^{2} \theta=0$	A1	or other form that leads to solutions 0° and 180°
$\Rightarrow \sin \theta=0$ or $\tan \theta=0, \theta=0^{\circ}, 180^{\circ}$		
or $2 \cos \theta-\sin \theta=0$	M1	$\tan \theta=2$
$\Rightarrow \quad \tan \theta=2$	A1,	(-1 for extra solutions in range)
$\Rightarrow \quad \theta=63.43^{\circ}, 243.43^{\circ}$	$\begin{array}{\|l\|l\|} \hline \text { A1 } \\ \hline \end{array}$	
OR M1		
Using Rsin $(2 \theta+\alpha)$	M1	
$\mathrm{R}=\sqrt{ } 5$ and $\alpha=26.57^{\circ}$	A1	
$2 \theta+26.57=\arcsin 1 / \mathrm{R}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \end{array}$	
$\begin{gathered} \theta=0^{\circ}, 180^{\circ} \\ \theta=63.43^{\circ}, 243.43^{\circ} \end{gathered}$	$\mathrm{A} 1, \mathrm{~A} 1$ [6]	(-1 for extra solutions in range)
	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$x-y+2 z=c$ finding c
(ii) $\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{l} 7+\lambda \\ 12+3 \lambda \\ 9+2 \lambda \end{array}\right)$	M1	
$\begin{aligned} & \Rightarrow \quad 7+\lambda-(12+3 \lambda)+2(9+2 \lambda)=11 \\ & \Rightarrow \quad 2 \lambda=-2 \end{aligned}$	M1	ft their equation from (i)
$\Rightarrow \quad \lambda=-1$	A1	ft their $x-y+2 z=c$
Coordinates are (6, 9, 7)	A1 [7]	cao
6 (i) $\frac{1}{\sqrt{4-x^{2}}}=4^{-\frac{1}{2}}\left(1-\frac{1}{4} x^{2}\right)^{-\frac{1}{2}}$		
$=\frac{1}{2}\left[1+\left(-\frac{1}{2}\right)\left(-\frac{1}{2} x^{2}\right)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{\left.\left(-\frac{1}{x} x^{2}\right)^{2}+\ldots\right]}\right.$	M1	Binomial coeffs correct
$\frac{1}{2}\left[1+\left(-\frac{1}{2}\right)\left(-\frac{1}{4} x^{2}\right)+\frac{2}{2!}\left(-\frac{1}{4} x^{2}\right.\right.$	A1	Complete correct expression inside bracket
$=\frac{1}{2}+\frac{1}{16} x^{2}+\frac{3}{256} x^{4}+\ldots$	A1	cao
(ii) $\int^{1} \frac{1}{\sqrt{-x^{2}}} d x \approx \int_{0}^{1}\left(\frac{1}{2}+\frac{1}{16} x^{2}+\frac{3}{256} x^{4}\right) d x$		
$\begin{aligned} & =\left[\frac{1}{2} x+\frac{1}{48} x^{3}+\frac{3}{1280} x^{5}\right]_{0}^{1} \\ & =\frac{1}{2}+\frac{1}{48}+\frac{3}{1280} \\ & =0.5232 \text { (to } 4 \text { s.f.) } \end{aligned}$	A1	
$\text { (iii) } \begin{aligned} & \int_{0}^{1} \frac{1}{\sqrt{4-x^{2}}} d x=\left[\arcsin \frac{x}{2}\right]_{0}^{1} \\ & =\pi / 6=0.5236 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & {[7]} \end{aligned}$	

Section B

	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { E1 } \\ & {[3]} \\ & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \\ & {[3]} \end{aligned}$	Chain rule (or quotient rule) Substitution for x
(ii) When $t=0, x=a \Rightarrow a=2.5$ When $t=1, x=1.6 \Rightarrow 1.6=2.5 /(1+$ k) $\begin{array}{ll} \Rightarrow & 1+k=1.5625 \\ \Rightarrow & k=0.5625 \end{array}$	B1 M1 A1 [3]	$a=2.5$
(iii) In the long term, $x \rightarrow 0$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	or, for example, they die out.
$\begin{aligned} & \text { (iv) } \frac{1}{2 y-y^{2}}=\frac{1}{y(1-y)}=\frac{A}{y}+\frac{B}{2-y} \\ & \Rightarrow \quad 1=A(2-y)+B y \\ & y=0 \Rightarrow 2 A=1 \Rightarrow A=1 / 2 \\ & y=2 \Rightarrow 1=2 B \Rightarrow B=1 / 2 \\ & \Rightarrow \frac{1}{2 y-y^{2}}=\frac{1}{2 y}+\frac{1}{2(2-y)} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \\ & {[4]} \end{aligned}$	partial fractions evaluating constants by substituting values, equating coefficients or cover-up
$\begin{array}{ll} \text { (v) } & \int \frac{1}{2 y-y^{2}} d y=\int d t \\ \Rightarrow \quad \int\left[\frac{1}{2 y}+\frac{1}{2(2-y)} d y=\int d t\right. \\ \Rightarrow \quad & 1 / 2 \ln y-1 / 2 \ln (2-y)=t+c \\ \text { When } t=0, y=1 \Rightarrow 0-0=0+c \Rightarrow c=0 \\ \Rightarrow & \ln y-\ln (2-y)=2 t \\ \Rightarrow & \ln \frac{y}{2-y}=2 t^{*} \\ & \frac{y}{2-y}=e^{2 t} \\ \Rightarrow & y=2 \mathrm{e}^{2 t}-y \mathrm{e}^{2 t} \\ \Rightarrow & y+y \mathrm{e}^{2 t}=2 \mathrm{e}^{2 t} \\ \Rightarrow & y\left(1+\mathrm{e}^{2 t}\right)=2 \mathrm{e}^{2 t} \\ \Rightarrow \quad & y=\frac{2 e^{2 t}}{1+e^{2 t}}=\frac{2}{1+e^{-2 t}} * \end{array}$	M1 B1 ft A1 E1 M1 DM1 E1 [7]	Separating variables $1 / 2 \ln y-1 / 2 \ln (2-y) \mathrm{ft}$ their A,B evaluating the constant Anti-logging Isolating y
(vi) As $t \rightarrow \infty \mathrm{e}^{-2 t} \rightarrow 0 \Rightarrow y \rightarrow 2$ So long term population is 2000	$\begin{array}{r} \mathrm{B} 1 \\ {[1]} \\ \hline \end{array}$	or $y=2$

Comprehension

1.

It is the largest number in the Residual column in Table 5.
B1
2. (i)

Acceptance percentage, $\boldsymbol{a} \%$		10%	14%	$\mathbf{1 2 \%}$	$\mathbf{1 1 \%}$	$\mathbf{1 0 . 5 \%}$
Party	Votes (\%)	Seats	Seats	Seats	Seats	Seats
P	30.2	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$
Q	11.4	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
R	22.4	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$
S	14.8	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
T	10.9	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
U	10.3	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
Total seats		$\mathbf{9}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{7}$

$\begin{array}{lllllll}\text { Seat Allocation } & \text { P } 2 & \text { Q1 } 1 & \text { R } 2 & \text { S } 1 & \text { T } 1 & \text { U } 0\end{array}$
10\% \& 14\%
B1
Trial
M1
10.5\% (10.3<x ≤ 10.9) A1 Allocation A1
(ii)

	Round							
Party	1	2	3	4	5	6	7	Residual
P	30.2	15.1	15.1	10.07	10.07	10.07	10.07	10.07
Q	11.4	11.4	11.4	11.4	11.4	5.7	5.7	5.7
R	22.4	22.4	11.2	11.2	11.2	11.2	7.47	7.47
S	14.8	14.8	14.8	14.8	7.4	7.4	7.4	7.4
T	10.9	10.9	10.9	10.9	10.9	10.9	10.9	5.45
U	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3
Seat allocated to	P	R	P	S	Q	R	T	

$\begin{array}{lllllll}\text { Seat Allocation } & \text { P } 2 & \text { Q1 } 1 & \text { R } 2 & \text { S } 1 & \text { T1 } & \text { U } 0\end{array}$

General method M1 minor arithmetic error)

$$
\frac{11.2}{1+1}<11 \leq \frac{11.2}{1} \Rightarrow 5.6<11 \leq 11.2
$$

M1, A1
for either or both
M1 only for $5.6<a \leq 11.2$
4. (i) The end-points of the intervals are the largest values in successive columns of Table 5.(or two largest within a column)

B1

So in

2	$16.6<a \leq 22.2$

22.2 is the largest number in Round 2. 16.6 is the largest number in Round 3.

B1
(ii)

Seats	a	Seats	a	
1	$22.2<a \leq 27.0$	5	$11.1<a \leq 11.2$	
2	$16.6<a \leq 22.2$	6	$10.6<a \leq 11.1$	
3	$13.5<a \leq 16.6$	7	$9.0<a \leq 10.6$	
4	$11.2<a \leq 13.5$			

5. - means \leq, \circ means $<\quad$ (greater or less than)

B1
(ii) $\frac{V_{k}}{N_{k}+1}<a$
$a \leq \frac{V_{k}}{N_{k}}$
$V_{k}<a N_{k}+a \quad a N_{k} \leq V_{k}$
$V_{k}-a N_{k}<a \quad 0 \leq V_{k}-a N_{k}$ $0 \leq V_{k}-a N_{k}<a$
B1
(iii) The unused votes may be zero but must be less than a.

Mark Scheme 4754
 June 2006

$$
\begin{array}{ll}
1 & \sin x-\sqrt{ } 3 \cos x=R \sin (x-\alpha) \\
& =R(\sin x \cos \alpha-\cos x \sin \alpha) \\
\Rightarrow & R \cos \alpha=1, R \sin \alpha=\sqrt{ } 3 \\
\Rightarrow & R^{2}=1^{2}+(\sqrt{ } 3)^{2}=4, R=2 \\
& \tan \alpha=\sqrt{ } 3 / 1=\sqrt{ } 3 \Rightarrow \alpha=\pi / 3
\end{array}
$$

$$
\Rightarrow \sin x-\sqrt{3} \cos x=2 \sin (x-\pi / 3)
$$

$$
x \text { coordinate of } \mathrm{P} \text { is when } x-\pi / 3=\pi / 2
$$

$$
\Rightarrow x=5 \pi / 6
$$

$$
y=2
$$

So coordinates are $(5 \pi / 6,2)$

2(i) $\frac{3+2 x^{2}}{(1+x)^{2}(1-4 x)}=\frac{A}{1+x}+\frac{B}{(1+x)^{2}}+\frac{C}{1-4 x}$
$\Rightarrow 3+2 x^{2}=A(1+x)(1-4 x)+B(1-4 x)+C(1+x)^{2}$
$x=-1 \Rightarrow 5=5 B \Rightarrow B=1$
$x=1 / 4 \Rightarrow 3 \frac{1}{8}=\frac{25}{16} C \Rightarrow C=2$
coeff t of $x^{2}: 2=-4 A+C \Rightarrow A=0$
.
D
(ii) $(1+x)^{-2}=1+(-2) x+(-2)(-3) x^{2} / 2!+\ldots$

$$
=1-2 x+3 x^{2}+\ldots
$$

$$
(1-4 x)^{-1}=1+(-1)(-4 x)+(-1)(-2)(-4 x)^{2} / 2!+\ldots
$$

$$
=1+4 x+16 x^{2}+\ldots
$$

$$
\frac{3+2 x^{2}}{(1+x)^{2}(1-4 x)}=(1+x)^{-2}+2(1-4 x)^{-1}
$$

$$
\approx 1-2 x+3 x^{2}+2\left(1+4 x+16 x^{2}\right)
$$

$$
=3+6 x+35 x^{2}
$$

$3 \sin (\theta+\alpha)=2 \sin \theta$
$\Rightarrow \quad \sin \theta \cos \alpha+\cos \theta \sin \alpha=2 \sin \theta$
$\Rightarrow \quad \tan \theta \cos \alpha+\sin \alpha=2 \tan \theta$
$\Rightarrow \quad \sin \alpha=2 \tan \theta-\tan \theta \cos \alpha$

$$
=\tan \theta(2-\cos \alpha)
$$

$\Rightarrow \quad \tan \theta=\frac{\sin \alpha}{2-\cos \alpha} *$
$\sin \left(\theta+40^{\circ}\right)=2 \sin \theta$
$\Rightarrow \quad \tan \theta=\frac{\sin 40}{2-\cos 40}=0.5209$
$\Rightarrow \quad \theta=27.5^{\circ}, 207.5^{\circ}$

4 (a) $\frac{d x}{d t}=k \sqrt{x}$	M1 A1 [2]	$\begin{aligned} & \frac{d x}{d t}=\ldots \\ & k \sqrt{x} \end{aligned}$
$\begin{aligned} & \text { (b) } \quad \frac{d y}{d t}=\frac{10000}{\sqrt{y}} \\ & \Rightarrow \quad \int \sqrt{y} d y=\int 10000 d t \\ & \Rightarrow \quad \frac{2}{3} y^{\frac{3}{2}}=10000 t+c \end{aligned}$ When $t=0, y=900 \Rightarrow 18000=c$ $\begin{aligned} \Rightarrow \quad y & =\left[\frac{3}{2}(10000 t+18000)\right]^{\frac{2}{3}} \\ & =(1500(10 t+18))^{\frac{2}{3}} \end{aligned}$ When $t=10, y=3152$	M1 A1 B1 A1 M1 A1 [6]	separating variables condone omission of c evaluating constant for their integral any correct expression for $y=$ for method allow substituting $t=10$ in their expression cao
$\begin{aligned} & 5 \text { (i) } \begin{aligned} \int x e^{-2 x} d x \quad \text { let } u & =x, \mathrm{~d} v / \mathrm{d} x=\mathrm{e}^{-2 x} \\ \Rightarrow v & =-1 / 2 \mathrm{e}^{-2 x} \end{aligned} \\ & =-\frac{1}{2} x e^{-2 x}+\int \frac{1}{2} e^{-2 x} d x \\ & =-\frac{1}{2} x e^{-2 x}-\frac{1}{4} e^{-2 x}+c \\ & =-\frac{1}{4} e^{-2 x}(1+2 x)+c^{*} \\ & \text { or } \begin{aligned} & d x \\ & d x\left.-\frac{1}{2} x e^{-2 x}-\frac{1}{4} e^{-2 x}+c\right] \end{aligned}=-\frac{1}{2} e^{-2 x}+x e^{-2 x}+\frac{1}{2} e^{-2 x} \\ & \\ & =x \mathrm{e}^{-2 x} \end{aligned}$	M1 A1 E1 M1 A1 E1 [3]	Integration by parts with $u=x, \mathrm{~d} v / \mathrm{d} x=\mathrm{e}^{-2 x}$ $=-\frac{1}{2} x e^{-2 x}+\int \frac{1}{2} e^{-2 x} d x$ condone omission of c product rule
$\text { (ii) } \begin{aligned} V & =\int_{0}^{2} \pi y^{2} d x \\ & =\int_{0}^{2} \pi\left(x^{1 / 2} e^{-x}\right)^{2} d x \\ & =\pi \int_{0}^{2} x e^{-2 x} d x \\ & =\pi\left[-\frac{1}{4} e^{-2 x}(1+2 x)\right]_{0}^{2} \\ & =\pi\left(-1 / 4 \mathrm{e}^{-4} .5+1 / 4\right) \\ & =\frac{1}{4} \pi\left(1-\frac{5}{e^{4}}\right) * \end{aligned}$	M1 A1 DM1 E1 [4]	Using formula condone omission of limits $y^{2}=x e^{-2 x}$ condone omission of limits and π condone omission of π (need limits)

Section B

$\begin{array}{ll} 6 \text { (i) } & \text { At E, } \theta=2 \pi \\ \Rightarrow & x=a(2 \pi-\sin 2 \pi)=2 a \pi \\ & \text { So OE }=2 a \pi . \\ \Rightarrow & \text { Max height is when } \theta=\pi \\ \Rightarrow & y=a(1-\cos \pi)=2 a \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	$\theta=\pi, 180^{\circ}, \cos \theta=-1$
$\text { (ii) } \begin{aligned} \frac{d y}{d x} & =\frac{d y / d \theta}{d x / d \theta} \\ & =\frac{a \sin \theta}{a(1-\cos \theta)} \\ & =\frac{\sin \theta}{(1-\cos \theta)} \end{aligned}$	M1 M1 A1 [3]	$\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}$ for theirs $\frac{d}{d \theta}(\sin \theta)=\cos \theta, \frac{d}{d \theta}(\cos \theta)=-\sin \theta$ both or equivalent www condone uncancelled a
$\begin{aligned} & \text { (iii) } \begin{array}{l} \tan 30^{\circ}=1 / \sqrt{ } 3 \\ \Rightarrow \quad \frac{\sin \theta}{(1-\cos \theta)}=\frac{1}{\sqrt{3}} \\ \Rightarrow \quad \sin \theta=\frac{1}{\sqrt{3}}(1-\cos \theta)^{*} \\ \text { When } \theta=2 \pi / 3, \sin \theta=\sqrt{3} / 2 \\ (1-\cos \theta) / \sqrt{ } 3=(1+1 / 2) / \sqrt{ } 3=\frac{3}{2 \sqrt{3}}=\frac{\sqrt{3}}{2} \\ \mathrm{BF}=a(1+1 / 2)=3 a / 2^{*} \\ \mathrm{OF}=a(2 \pi / 3-\sqrt{3} / 2) \end{array} \end{aligned}$	M1 E1 M1 E1 E1 B1 [6]	Or gradient=1/ $\sqrt{ } 3$ $\sin \theta=\sqrt{ } 3 / 2, \cos \theta=-1 / 2$ or equiv.
(iv) $\begin{aligned} \mathrm{BC} & =2 a \pi-2 a(2 \pi / 3-\sqrt{ } 3 / 2) \\ & =a(2 \pi / 3+\sqrt{3}) \\ \mathrm{AF} & =\sqrt{ } 3 \times 3 a / 2=3 \sqrt{ } 3 a / 2 \\ \mathrm{AD} & =\mathrm{BC}+2 \mathrm{AF} \\ & =a(2 \pi / 3+\sqrt{ } 3+3 \sqrt{3}) \\ & =a(2 \pi / 3+4 \sqrt{3}) \\ & =20 \\ \Rightarrow a & =2.22 \mathrm{~m} \end{aligned}$	B1ft M1 A1 M1 A1 [5]	their OE -2their OF

7 (i) $\quad \mathrm{AE}=\sqrt{ }\left(15^{2}+20^{2}+0^{2}\right)=25$	$\begin{aligned} & \text { M1 A1 } \\ & {[2]} \end{aligned}$	
(ii) $\overline{\mathrm{AE}}=\left(\begin{array}{l} 15 \\ -20 \\ 0 \end{array}\right)=5\left(\begin{array}{l} 3 \\ -4 \\ 0 \end{array}\right)$ Equation of BD is $\mathbf{r}=\left(\begin{array}{l}-1 \\ -7 \\ 11\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ -4 \\ 0\end{array}\right)$ $\begin{aligned} & \mathrm{BD}=15 \Rightarrow \lambda=3 \\ & \Rightarrow \mathrm{D} \text { is }(8,-19,11) \end{aligned}$	M1 A1 M1 A1cao [4]	Any correct form or $\quad \mathbf{r}=\left(\begin{array}{l}-1 \\ -7 \\ 11\end{array}\right)+\lambda\left(\begin{array}{l}15 \\ -20 \\ 0\end{array}\right)$ $\lambda=3$ or $3 / 5$ as appropriate
(iii) At A: $-3 \times 0+4 \times 0+5 \times 6=30$ At B: $-3 \times(-1)+4 \times(-7)+5 \times 11=30$ At C: $-3 \times(-8)+4 \times(-6)+5 \times 6=30$ Normal is $\left(\begin{array}{l}-3 \\ 4 \\ 5\end{array}\right)$	M1 A2,1,0 B1 [4]	One verification (OR B1 Normal, M1 scalar product with 1 vector in the plane, A1two correct, A1 verification with a point OR M1 vector form of equation of plane eg $\mathrm{r}=0 \mathrm{i}+0 \mathrm{j}+6 \mathrm{k}+\mu(\mathrm{i}+7 \mathrm{j}-5 \mathrm{k})+v(8 \mathrm{i}+6 \mathrm{j}+0 \mathrm{k})$ M1 elimination of both parameters A1 equation of plane B1 Normal *)
$\left.\begin{array}{l} \text { (iv) }\left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \cdot \overrightarrow{A E}=\left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \cdot\left(\begin{array}{l} 15 \\ -20 \\ 0 \end{array}\right)=60-60=0 \\ \Rightarrow \quad\left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \cdot \overrightarrow{A B}=\left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \cdot\left(\begin{array}{l} -1 \\ 3 \\ 5 \end{array}\right) \text { is normal to plane } \\ 5 \end{array}\right)=-4-21+25=0$ (iv) Equation is $4 x+3 y+5 z=30$.	M1 E1 M1 A1 [4]	scalar product with one vector in plane $=$ 0 scalar product with another vector in plane $=0$ $4 x+3 y+5 z=\ldots$ 30 OR as * above OR M1 for subst 1 point in $4 x+3 y+5 z=, A 1$ for subst 2 further points $=30$ A1 correct equation, B1 Normal
(v) Angle between planes is angle between $\begin{aligned} & \text { normals }\left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \text { and }\left(\begin{array}{l} -3 \\ 4 \\ 5 \end{array}\right) \\ & \cos \theta=\frac{4 \times(-3)+3 \times 4+5 \times 5}{\sqrt{50} \times \sqrt{50}}=\frac{1}{2} \\ \Rightarrow \quad & \theta=60^{\circ} \end{aligned}$	M1 M1 A1 A1 [4]	Correct method for any 2 vectors their normals only (rearranged) or 120° cao

	Comprehension Paper 2		
Qu	Answer	Mark	Comment
1.	$\left(26+\frac{385}{1760}\right) \times 4$ minutes 1 hour 44 minutes 52.5 seconds	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \end{array}$	Accept all equivalent forms, with units. Allow ... 52 and 53 seconds.
2.	$\begin{aligned} & R=259.6-0.391(T-1900) \\ & \therefore 259.6-0.391(T-1900)=0 \\ & \Rightarrow T=2563.9 \end{aligned}$ R will become negative in 2563	M1 A1 A1	$\mathrm{R}=0$ and attempting to solve. $\mathrm{T}=2563,2564,2563.9 \ldots$..any correct cao
3.	The value of L is 120.5 and this is over 2 hours or (120 minutes)	E1	or $\mathrm{R}>120.5$ minutes or showing there is no solution for $120=120.5+54.5 \mathrm{e}^{-}$
4.(i)	Substituting $t=0$ in $R=L+(U-L) \mathrm{e}^{-k t}$ gives $R=L+(U-L) \times 1$ $=U$	M1 A1 E1	$\mathrm{e}^{0}=1$
4.(ii)	As $t \rightarrow \infty, \mathrm{e}^{-k t} \rightarrow 0$ and so $R \rightarrow L$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { E1 } \end{array}$	
5.(i)		M1 A1 A1	Increasing curve Asymptote A and B marked correctly
5.(ii)	Any field event: long jump, high jump, triple jump, pole vault, javelin, shot, discus, hammer, etc.	B1	
6.(i)	$t=104$	B1	
6.(ii)	$\begin{aligned} & R=115+(175-115) \mathrm{e}^{-0.0467 \mathrm{t}^{0.797}} \\ & R=115+60 \times \mathrm{e}^{-0.0467 \times 104^{0.797}} \\ & R=115+60 \times \mathrm{e}^{-1.892} \\ & R=124.047 \ldots \\ & 2 \text { hours } 4 \text { minutes } 3 \text { seconds } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Substituting their t $124,124.05$, etc.

Mark Scheme 4754 January 2007

Paper A - Section A

$\begin{aligned} & 5 \quad(1+3 x)^{\frac{1}{3}}= \\ & =1+\frac{1}{3}(3 x)+\frac{\frac{1}{3} \cdot\left(-\frac{2}{3}\right)}{2!}(3 x)^{2}+\frac{\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(3 x)^{3}+\ldots \\ & =1+x-x^{2}+\frac{5}{3} x^{3}+\ldots \\ & \quad \text { Valid for }-1<3 x<1 \Rightarrow-1 / 3<x<1 / 3 \end{aligned}$	M1 B1 A2,1,0 B1 [5]	binomial expansion (at least 3 terms) correct binomial coefficients (all) $x,-x^{2}, 5 x^{3} / 3$
$\begin{aligned} & \text { 6(i) } \frac{1}{(2 x+1)(x+1)}=\frac{A}{2 x+1}+\frac{B}{x+1} \\ & \Rightarrow \quad 1=A(x+1)+B(2 x+1) \\ & x=-1: 1=-B \Rightarrow B=-1 \\ & x=-1 / 2: 1=1 / 2 A \Rightarrow A=2 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	or cover up rule for either value
$\begin{gathered} \text { (ii) } \quad \begin{aligned} & \frac{d y}{d x}=\frac{y}{(2 x+1)(x+1)} \\ \Rightarrow \quad & \int \frac{1}{y} d y=\int \frac{1}{(2 x+1)(x+1)} d x \\ & =\int\left(\frac{2}{2 x+1}-\frac{1}{x+1}\right) d x \\ \Rightarrow \quad & \ln y=\ln (2 x+1)-\ln (x+1)+c \\ \Rightarrow \quad & \ln 2=\ln 1-\ln 1+c \Rightarrow c=\ln 2 \\ \Rightarrow \quad & \ln y=\ln (2 x+1)-\ln (x+1)+\ln 2 \\ & =\ln \frac{2(2 x+1)}{x+1} \\ \Rightarrow \quad & y=\frac{4 x+2}{x+1} * \end{aligned}, \end{gathered}$	M1 A1 B1ft M1 E1 [5]	separating variables correctly condone omission of $\mathrm{c} . \mathrm{ft} \mathrm{A}, \mathrm{B}$ from (i) calculating c, no incorrect \log rules combining lns www

Section B

$\begin{aligned} & \text { 7(i) At A, } \cos \theta=1 \Rightarrow \theta=0 \\ & \text { At } \mathrm{B}, \cos \theta=-1 \Rightarrow \theta=\pi \\ & \text { At C } x=0, \Rightarrow \cos \theta=0 \Rightarrow \theta=\pi / 2 \\ & \Rightarrow \quad y=\sin \frac{\pi}{2}-\frac{1}{8} \sin \pi=1 \end{aligned}$	B1 B1 M1 A1 [4]	or subst in both x and y allow 180°
$\text { (ii) } \begin{aligned} & \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta} \\ &=\frac{\cos \theta-\frac{1}{4} \cos 2 \theta}{-\sin \theta} \\ &=\frac{\cos 2 \theta-4 \cos \theta}{4 \sin \theta} \\ & \Rightarrow \quad d y / \mathrm{d} x=0 \text { when } \cos 2 \theta-4 \cos \theta=0 \\ & \Rightarrow \quad 2 \cos ^{2} \theta-1-4 \cos \theta=0 \\ & \Rightarrow \quad 2 \cos ^{2} \theta-4 \cos \theta-1=0^{*} \end{aligned}$	M1 A1 A1 M1 E1 [5]	finding $d y / d \theta$ and $d x / d \theta$ correct numerator correct denominator $=0$ or their num $=0$
$\begin{aligned} & \text { (iii) } \cos \theta=\frac{4 \pm \sqrt{16+8}}{4}=1 \pm \frac{1}{2} \sqrt{6} \\ &(1+1 / 2 \sqrt{ } 6>1 \text { so no solution }) \\ & \Rightarrow \theta=1.7975 \\ & y=\sin \theta-\frac{1}{8} \sin 2 \theta=1.0292 \end{aligned}$	M1 A1ft A1 cao M1 A1 cao [5]	$1 \pm \frac{1}{2} \sqrt{6}$ or (2.2247,-.2247) both or -ve their quadratic equation 1.80 or 103° their angle 1.03 or better
$\text { (iv) } \begin{aligned} V & =\int_{-1}^{1} \pi y^{2} d x \\ & =\frac{1}{16} \pi \int_{-1}^{1}\left(16-8 x+x^{2}\right)\left(1-x^{2}\right) d x \\ & =\frac{1}{16} \pi \int_{-1}^{1}\left(16-8 x+x^{2}-16 x^{2}+8 x^{3}-x^{4}\right) d x \\ & =\frac{1}{16} \pi \int_{-1}^{1}\left(16-8 x-15 x^{2}+8 x^{3}-x^{4}\right) d x \\ & =\frac{1}{16} \pi\left[16 x-4 x^{2}-5 x^{3}+2 x^{4}-\frac{1}{5} x^{5}\right]_{-1}^{1} \\ & =\frac{1}{16} \pi\left(32-10-\frac{2}{5}\right) \\ & =1.35 \pi=4.24 \end{aligned}$	M1 M1 E1 B1 M1 A1cao [6]	correct integral and limits expanding brackets correctly integrated substituting limits

$\begin{aligned} 8 \text { (i) } & \sqrt{(40-0)^{2}+(0+40)^{2}+(-20-0)^{2}} \\ & =60 \mathrm{~m} \end{aligned}$	M1 A1 [2]	
$\begin{aligned} & \text { (ii) } \overrightarrow{B A}=\left(\begin{array}{l} -40 \\ -40 \\ 20 \end{array}\right)=20\left(\begin{array}{l} -2 \\ -2 \\ 1 \end{array}\right) \\ & \cos \theta=\frac{\left(\begin{array}{l} -2 \\ -2 \\ 1 \end{array}\right) \cdot\left(\begin{array}{l} 3 \\ 4 \\ 1 \end{array}\right)}{\sqrt{9} \sqrt{26}}=-\frac{13}{3 \sqrt{26}} \\ & \Rightarrow \quad \theta=148^{\circ} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	$\begin{aligned} & \text { or } \overrightarrow{A B} \\ & -13 \text { oe eg }-260 \\ & \sqrt{9} \sqrt{ } 26 \text { oe eg } 60 \sqrt{ } 26 \\ & \text { cao (or radians) } \end{aligned}$
(iii) $\mathbf{r}=\left(\begin{array}{l}40 \\ 0 \\ -20\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)$ $\begin{array}{ll} \text { At C, } z=0 \Rightarrow \lambda=20 \\ \Rightarrow \quad & a=40+3 \times 20=100 \\ b=0+4 \times 20=80 \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [5] } \end{aligned}$	$\begin{aligned} & \left(\begin{array}{l} 40 \\ 0 \\ -20 \end{array}\right)+\ldots \\ & \ldots+\lambda\left(\begin{array}{l} 3 \\ 4 \\ 1 \end{array}\right) \quad \text { or. } . .+\lambda\left(\begin{array}{l} a-40 \\ b \\ 20 \end{array}\right) \\ & 100 \\ & 80 \end{aligned}$
$\left(\begin{array}{l}6 \\ -5 \\ 2\end{array}\right) \cdot\left(\begin{array}{l}-2 \\ -2 \\ 1\end{array}\right)=-12+10+2=0$ $\left(\begin{array}{l}6 \\ -5 \\ 2\end{array}\right) \cdot\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)=18-20+2=0$ $\Rightarrow \quad\left(\begin{array}{l}6 \\ -5 \\ 2\end{array}\right)$ is perpendicular to plane. (iv) Equation of plane is $6 x-5 y+2 z=c$ At B (say) $6 \times 40-5 \times 0+2 \times-20=c$ $\Rightarrow c=200$ so $6 x-5 y+2 z=200$	B1 B1 M1 M1 A1 [5]	(alt. method finding vector equation of plane M1 eliminating both parameters DM1 correct equation A1 stating Normal hence perpendicular B2)

Paper B Comprehension

1(i)											B1 Table
	Leading digit		2	3	4	5	6	7	8		
	Frequency		4	2	2	2	1	1	1		
(ii)	Leading digit Frequency										M1 A1 Table
			2	3	4	5	6	7	8		
			3	2	3	1	2	1	1	0	
(iii)	Leading digit Frequency	$\begin{array}{\|l\|} \hline 1 \\ \hline 6.0 \\ \hline \end{array}$									B1any 4 correct B1 other 4 correct
			2	3	4	5	6	7	8	9	
			3.5	2.5	1.9	1.6	1.3	1.2	1.0	0.9	
(iv)	Any sensible comment such as: - The general pattern of the frequencies/results is the same for all three tables. - Due to the small number of data items we cannot expect the pattern to follow Benford's Law very closely.										E1
2	Evidence of $4+3+4+2+2$ from Table 4 frequencies is the same as 15 in Table 6										B1
3	$p_{1}=p_{3}+p_{4}+p_{5}$: on multiplication by 3 , numbers with a leading digit of 1 will be mapped to numbers with a leading digit of 3,4 or 5 and no other numbers have this property.										B1 Multiplication B1... by 3
4	$\log _{10}(n+1)-\log _{10} n=\log _{10}\left(\frac{n+1}{n}\right)=\log _{10}\left(\frac{n}{n}+\frac{1}{n}\right)=\log _{10}\left(1+\frac{1}{n}\right)$										$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{E} 1 \end{aligned}$
5	Substitute $\mathrm{L}(4)=2 \times \mathrm{L}(2)$ and $\mathrm{L}(6)=\mathrm{L}(3)+\mathrm{L}(2)$ in $\mathrm{L}(8)-\mathrm{L}(6)=\mathrm{L}(4)-\mathrm{L}(3)$: this gives $L(8)=L(6)-L(3)+L(4)=L(2)+2 \times L(2)=3 \times L(2)$										M1 M1 subst E1 (or alt M1 for 2 or more Ls used M1 use of at least 2 given results oe E1)
6	$a=28$. All entries with leading digit 2 or 3 will, on multiplying by 5 , have leading digit 1 . None of the other original daily wages would have this property.										B1 B1
	$b=9$. Similarly, all entries with leading digit 8 or 9 will, on multiplying by 5 , have leading digit 4 . None of the other original daily wages would have this property.										B1 B1
											Total 18

Mark Scheme 4754

 June 2007
Section A

$\begin{gathered} 1 \quad \sin \theta-3 \cos \theta=R \sin (\theta-\alpha) \\ \quad=R(\sin \theta \cos \alpha-\cos \theta \sin \alpha) \\ \Rightarrow \quad R \cos \alpha=1, R \sin \alpha=3 \\ \Rightarrow \quad R^{2}=1^{2}+3^{2}=10 \Rightarrow R=\sqrt{ } 10 \\ \tan \alpha=3 \Rightarrow \alpha=71.57^{\circ} \\ \\ \\ \sqrt{ } 10 \sin \left(\theta-71.57^{\circ}\right)=1 \\ \Rightarrow \quad \theta-71.57^{\circ}=\sin ^{-1}(1 / \sqrt{ } 10) \\ \quad \theta-71.57^{\circ}=18.43^{\circ}, 161.57^{\circ} \\ \Rightarrow \quad \theta=90^{\circ}, \\ \quad 233.1^{\circ} \end{gathered}$	M1 B1 M1 A1 M1 B1 A1 [7]	equating correct pairs oe ft www cao (71.6° or better) oe ft R, α www and no others in range (MR-1 for radians)
$\begin{aligned} & \mathbf{2} \text { Normal vectors are }\left(\begin{array}{l} 2 \\ 3 \\ 4 \end{array}\right) \text { and }\left(\begin{array}{l} 1 \\ -2 \\ 1 \end{array}\right) \\ & \Rightarrow\left(\begin{array}{l} 2 \\ 3 \\ 4 \end{array}\right) \cdot\left(\begin{array}{l} 1 \\ -2 \\ 1 \end{array}\right)=2-6+4=0 \\ & \Rightarrow \text { planes are perpendicular. } \end{aligned}$	B1 B1 M1 E1 [4]	
$\begin{array}{ll} 3 & \text { (i) } y=\ln x \Rightarrow x=\mathrm{e}^{y} \\ \Rightarrow & V \\ =\int_{0}^{2} \pi x^{2} d y \\ & =\int_{0}^{2} \pi\left(e^{y}\right)^{2} d y=\int_{0}^{2} \pi e^{2 y} d y * \end{array}$	B1 M1 E1 [3]	
$\text { (ii) } \begin{gathered} \int_{0}^{2} \pi e^{2 y} d y=\pi\left[\frac{1}{2} e^{2 y}\right]_{0}^{2} \\ =1 / 2 \pi\left(e^{4}-1\right) \end{gathered}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$\begin{array}{\|l} 1 / 2 \mathrm{e}^{2 y} \\ \text { substituting limits in } k \pi e^{2 y} \\ \text { or equivalent, but must be exact and evaluate } \mathrm{e}^{0} \\ \text { as 1. } \end{array}$
$\begin{array}{rl} 4 & x=\frac{1}{t}-1 \Rightarrow \frac{1}{t}=x+1 \\ \Rightarrow & t=\frac{1}{x+1} \\ \Rightarrow & y=\frac{2+\frac{1}{x+1}}{1+\frac{1}{x+1}}=\frac{2 x+2+1}{x+1+1}=\frac{2 x+3}{x+2} \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \end{aligned}$	Solving for t in terms of x or y Subst their t which must include a fraction, clearing subsidiary fractions/ changing the subject oe www
$\text { or } \begin{aligned} \frac{3+2 x}{2+x} & =\frac{3+\frac{2-2 t}{t}}{2+\frac{1-t}{t}} \\ & =\frac{3 t+2-2 t}{2 t+1-t} \\ & =\frac{t+2}{t+1}=y \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \\ & \text { [4] } \end{aligned}$	substituting for x or y in terms of t clearing subsidiary fractions/changing the subject

$5 \quad \mathbf{r}=\left(\begin{array}{l}1 \\ 2 \\ -1\end{array}\right)+\lambda\left(\begin{array}{l}-1 \\ 2 \\ 3\end{array}\right) \Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1-\lambda \\ 2+2 \lambda \\ -1+3 \lambda\end{array}\right)$
When $x=-1,1-\lambda=-1, \Rightarrow \lambda=2$
$\Rightarrow y=2+2 \lambda=6$,

$$
z=-1+3 \lambda=5
$$

\Rightarrow point lies on first line

$$
\mathbf{r}=\left(\begin{array}{l}
0 \\
6 \\
3
\end{array}\right)+\mu\left(\begin{array}{l}
1 \\
0 \\
-2
\end{array}\right) \Rightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
\mu \\
6 \\
3-2 \mu
\end{array}\right)
$$

When $x=-1, \mu=-1$,
$\Rightarrow y=6$,

$$
z=3-2 \mu=5
$$

\Rightarrow point lies on second line
Angle between $\left(\begin{array}{l}-1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 0 \\ -2\end{array}\right)$ is θ, where
$\cos \theta=\frac{-1 \times 1+2 \times 0+3 \times-2}{\sqrt{14} \cdot \sqrt{5}}$

$$
=-\frac{7}{\sqrt{70}}
$$

$\Rightarrow \quad \theta=146.8^{\circ}$
\Rightarrow acute angle is 33.2°
6(i) $A \approx 0.5\left[\frac{(1.1696+1.0655}{2}+1.1060\right]$

$$
\text { = } 1.11 \text { (3 s.f.) }
$$

(ii) $\quad\left(1+e^{-x}\right)^{1 / 2}=1+\frac{1}{2} e^{-x}+\frac{\frac{1}{2} \cdot-\frac{1}{2}}{2!}\left(e^{-x}\right)^{2}+\ldots$

$$
\approx 1+\frac{1}{2} e^{-x}-\frac{1}{8} e^{-2 x *}
$$

(iii) $I=\int_{1}^{2}\left(1+\frac{1}{2} e^{-x}-\frac{1}{8} e^{-2 x}\right) d x$

$$
\begin{aligned}
& =\left[x-\frac{1}{2} e^{-x}+\frac{1}{16} e^{-2 x}\right]_{1}^{2} \\
& =\left(2-\frac{1}{2} e^{-2}+\frac{1}{16} e^{-4}\right)-\left(1-\frac{1}{2} e^{-1}+\frac{1}{16} e^{-2}\right) \\
& =1.9335-0.8245 \\
& =1.11 \text { (3 s.f. })
\end{aligned}
$$

Finding λ or μ
checking other two coordinates
checking other two co-ordinates

Finding angle between correct vectors
use of formula
$\pm \frac{7}{\sqrt{70}}$
Final answer must be acute angle
[7]

Correct expression for trapezium rule
A1 cao
[2]
M1 \quad Binomial expansion with $p=1 / 2$
A1
E1
[3]

	M1
A1	integration
A1	substituting limits into correct expression
$[3]$	

Section B

$\begin{aligned} 7 \text { (a) (i) } P_{\max } & =\frac{2}{2-1}=2 \\ P_{\min } & =\frac{2}{2+1}=2 / 3 . \end{aligned}$	B1 B1 [2]	
	M1 B1 A1 DM1 E1 [5]	chain rule $-1(\ldots)^{-2}$ soi (or quotient rule M1,numerator A1,denominator A1) attempt to verify or by integration as in (b)(ii)
$\begin{aligned} & \text { (b)(i) } \begin{aligned} & \frac{1}{P(2 P-1)}=\frac{A}{P}+\frac{B}{2 P-1} \\ &=\frac{A(2 P-1)+B P}{P(2 P-1)} \\ & \Rightarrow \quad 1=A(2 P-1)+B P \end{aligned} \\ & P=0 \Rightarrow 1=-A \Rightarrow A=-1 \\ & P=1 / 2 \Rightarrow 1=A .0+1 / 2 B \Rightarrow B=2 \end{aligned}$ So $\frac{1}{P(2 P-1)}=-\frac{1}{P}+\frac{2}{2 P-1}$	M1 M1 A1 A1 [4]	correct partial fractions substituting values, equating coeffs or cover up rule $\begin{aligned} & A=-1 \\ & B=2 \end{aligned}$
$\begin{aligned} & \text { (ii) } \frac{d P}{d t}=\frac{1}{2}\left(2 P-P^{2}\right) \cos t \\ & \Rightarrow \quad \int \frac{1}{2 P^{2}-P} d P=\int \frac{1}{2} \cos t d t \\ & \Rightarrow \quad \int\left(\frac{2}{2 P-1}-\frac{1}{P}\right) d P=\int \frac{1}{2} \cos t d t \\ & \Rightarrow \quad \ln (2 P-1)-\ln P=1 / 2 \sin t+c \\ & \text { When } t=0, P=1 \\ & \Rightarrow \quad \ln 1-\ln 1=1 / 2 \sin 0+c \Rightarrow c=0 \\ & \Rightarrow \ln \left(\frac{2 P-1}{P}\right)=\frac{1}{2} \sin t \end{aligned}$	M1 A1 A1 B1 E1 [5]	separating variables $\begin{aligned} & \ln (2 P-1)-\ln P \text { ft their A,B from (i) } \\ & 1 / 2 \sin t \\ & \text { finding constant }=0 \end{aligned}$
$\text { (iii) } \begin{aligned} & P_{\max }=\frac{1}{2-e^{1 / 2}}=2.847 \\ P_{\min } & =\frac{1}{2-e^{-1 / 2}}=0.718 \end{aligned}$	M1A1 M1A1 [4]	www www

$8 \text { (i) } \begin{aligned} \frac{d y}{d x} & =\frac{10 \cos \theta+10 \cos 2 \theta}{-10 \sin \theta-10 \sin 2 \theta} \\ & =-\frac{\cos \theta+\cos 2 \theta}{\sin \theta+\sin 2 \theta} * \end{aligned}$ When $\theta=\pi / 3, \frac{d y}{d x}=-\frac{\cos \pi / 3+\cos 2 \pi / 3}{\sin \pi / 3+\sin 2 \pi / 3}$ $=0 \text { as } \cos \pi / 3=1 / 2, \cos 2 \pi / 3=-1 / 2$ $\text { At } \begin{aligned} A x & =10 \cos \pi / 3+5 \cos 2 \pi / 3 \\ & =21 / 2 \\ y & =10 \sin \pi / 3+5 \sin 2 \pi / 3=15 \sqrt{ } 3 / 2 \end{aligned}$	M1 E1 B1 M1 A1 A1 [6]	$d y / d \theta \div d x / d \theta$ or solving $\cos \theta+\cos 2 \theta=0$ substituting $\pi / 3$ into x or y 2 $1 / 2$ $15 \sqrt{ } 3 / 2$ (condone 13 or better)
$\begin{aligned} & \text { (ii) } x^{2}+y^{2}=(10 \cos \theta+5 \cos 2 \theta)^{2}+(10 \sin \theta+5 \sin 2 \theta)^{2} \\ & =100 \cos ^{2} \theta+100 \cos \theta \cos 2 \theta+25 \cos ^{2} 2 \theta \\ & +100 \sin ^{2} \theta+100 \sin \theta \sin 2 \theta+25 \sin ^{2} 2 \theta \\ & =100+100 \cos (2 \theta-\theta)+25 \\ & =125+100 \cos \theta * \end{aligned}$	B1 M1 DM1 E1 [4]	expanding $\cos 2 \theta \cos \theta+\sin 2 \theta \sin \theta=\cos (2 \theta-\theta)$ or substituting for $\sin 2 \theta$ and $\cos 2 \theta$
$\text { (iii) } \begin{aligned} \operatorname{Max} \sqrt{125+100} & =15 \\ \min \sqrt{125-100} & =5 \end{aligned}$	B1 B1 [2]	
$\begin{aligned} & \text { (iv) } 2 \cos ^{2} \theta+2 \cos \theta-1=0 \\ & \cos \theta=\frac{-2 \pm \sqrt{12}}{4}=\frac{-2 \pm 2 \sqrt{3}}{4} \\ & \text { At B, } \cos \theta=\frac{-1+\sqrt{3}}{2} \\ & \mathrm{OB}^{2}=125+50(-1+\sqrt{ } 3)=75+50 \sqrt{ } 3=161.6 \ldots \\ & \Rightarrow \quad \mathrm{OB}=\sqrt{ } 161.6 \ldots=12.7(\mathrm{~m}) \end{aligned}$	M1 A1 M1 A1 [4]	quadratic formula or $\theta=68.53^{\circ}$ or 1.20 radians, correct root selected or $\mathrm{OB}=10 \sin \theta+5 \sin 2 \theta \mathrm{ft}$ their $\theta / \cos \theta$ oe cao

Paper B Comprehension

1)	$\begin{aligned} & \mathrm{M}(a \pi, 2 a), \theta=\pi \\ & \mathrm{N}(4 a \pi, 0), \theta=4 \pi \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	
2)	Compare the equations with equations given in text, $x=a \theta-b \sin \theta, y=b \cos \theta$	M1	Seeing $a=7, b=0.25$
	$\begin{aligned} & \text { Wavelength }=2 \pi a=14 \pi(\approx 44) \\ & \text { Height }=2 b=0.5 \end{aligned}$	$\begin{array}{\|l} \hline \text { A1 } \\ \text { B1 } \\ \hline \end{array}$	
3i)	$\begin{aligned} & \text { Wavelength }=20 \Rightarrow a=\frac{10}{\pi}(=3.18 \ldots) \\ & \text { Height }=2 \Rightarrow b=1 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
ii)	In this case, the ratio is observed to be 12:8 Trough length : Peak length $=\pi a+2 b: \pi a-2 b$ and this is $(10+2 \times 1):(10-2 \times 1)$ So the curve is consistent with the parametric equations	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	substituting
4i)	$x=a \theta, y=b \cos \theta$ is the sine curve V and $x=a \theta-b \sin \theta, y=b \cos \theta$ is the curtate cycloid U. The sine curve is above mid-height for half its wavelength (or equivalent)	B1	
ii)	$\begin{aligned} & d=a \theta-(a \theta-b \sin \theta) \\ & \theta=\pi / 2, d=\left(\frac{\pi a}{2}\right)-\left(\frac{\pi a}{2}-b\right)=b \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$	Subtraction Using $\theta=\pi / 2$
iii)	Because b is small compared to a, the two curves are close together.	$\begin{aligned} & \hline \text { M1 } \\ & \text { E1 } \\ & \hline \end{aligned}$	Comparison attempted Conclusion
5)	Measurements on the diagram give Wavelength $\approx 3.5 \mathrm{~cm}$, Height $\approx 0.8 \mathrm{~cm}$ $\frac{\text { Wavelength }}{\text { Height }} \approx \frac{3.5}{0.8}=4.375$ Since $4.375<7$, the wave will have become unstable and broken.	B1 M1 E1	measurements/reading ratio [18]

ADVANCED GCE UNIT
 MATHEMATICS (MEI)

4754(B)/01

Applications of Advanced Mathematics (C4)
Paper B: Comprehension
INSERT
THURSDAY 14 JUNE 2007

INSTRUCTIONS TO CANDIDATES

- This insert contains the text for use with the questions.

Modelling sea waves

Introduction

There are many situations in which waves and oscillations occur in nature and often they are accurately modelled by the sine curve. However, this is not the case for sea waves as these come in a variety of shapes. The photograph in Fig. 1 shows an extreme form of sea wave being ridden by a surfer.

Fig. 1
At any time many parts of the world's oceans are experiencing storms. The strong winds create irregular wind waves. However, once a storm has passed, the waves form into a regular pattern, called swell. Swell waves are very stable; those resulting from a big storm would travel several times round the earth if they were not stopped by the land.

Fig. 2 illustrates a typical swell wave, but with the vertical scale exaggerated. The horizontal distance between successive peaks is the wavelength; the vertical distance from the lowest point in a trough to a peak is called the height. The height is twice the amplitude which is measured from the horizontal line of mid-height. The upper part is the crest. These terms are illustrated in Fig. 2.

Fig. 2
The speed of a wave depends on the depth of the water; the deeper the water, the faster the wave. (This is, however, not true for very deep water, where the wave speed is independent of the depth.) This has a number of consequences for waves as they come into shallow water.

- Their speed decreases.
- Their wavelength shortens.
- Their height increases.

Observations show that, as their height increases, the waves become less symmetrical. The troughs become relatively long and the crests short and more pointed.

The profile of a wave approaching land is illustrated in Fig. 3. Eventually the top curls over and the wave "breaks".

Fig. 3
If you stand at the edge of the sea you will see the water from each wave running up the shore towards you. You might think that this water had just travelled across the ocean. That would be wrong. When a wave travels across deep water, it is the shape that moves across the surface and not the water itself. It is only when the wave finally reaches land that the actual water moves any significant distance.

Experiments in wave tanks have shown that, except near the shore, each drop of water near the surface undergoes circular motion (or very nearly so). This has led people to investigate the possiblility that a form of cycloid would provide a better model than a sine curve for a sea wave.

Cycloids

There are several types of cycloid. In this article, the name cycloid refers to one of the family of curves which form the locus of a point on a circle rolling along a straight horizontal path.

Fig. 4 illustrates the basic cycloid; in this case the point is on the circumference of the circle.

Fig. 4
Two variations on this basic cycloid are the prolate cycloid, illustrated in Fig. 5, and the curtate cycloid illustrated in Fig. 6. The prolate cycloid is the locus of a point attached to the circle but outside the circumference (like a point on the flange of a railway train's wheel); the curtate cycloid is the locus of a point inside the circumference of the circle.

Fig. 5

Fig. 6

When several cycles of the curtate cycloid are drawn "upside down", as in Fig. 7, the curve does indeed look like the profile of a wave in shallow water.

Fig. 7

The equation of a cycloid

The equation of a cycloid is usually given in parametric form.
Fig. 8.1 and Fig. 8.2 illustrate a circle rolling along the x-axis. The circle has centre Q and radius a. P and R are points on its circumference and angle $\mathrm{PQR}=\theta$, measured in radians. Fig. 8.1 shows the initial position of the circle with P at its lowest point; this is the same point as the origin, O. Some time later the circle has rolled to the position shown in Fig. 8.2 with R at its lowest point.

Fig. 8.1

Fig. 8.2

In travelling to its new position, the circle has rolled the distance OR in Fig. 8.2. Since it has rolled along its circumference, this distance is the same as the arc length PR, and so is $a \theta$. Thus the coordinates of the centre, Q , in Fig. 8.2 are $(a \theta, a)$. To find the coordinates of the point P in Fig. 8.2, look at triangle QPZ in Fig. 9.

Fig. 9
You can see that

$$
\mathrm{PZ}=a \sin \theta \quad \text { and } \quad \mathrm{QZ}=a \cos \theta
$$

Hence the coordinates of P are $(a \theta-a \sin \theta, a-a \cos \theta)$, and so the locus of the point P is described by the curve with parametric equations

$$
x=a \theta-a \sin \theta, \quad y=a-a \cos \theta
$$

This is the basic cycloid.
These parametric equations can be generalised to

$$
x=a \theta-b \sin \theta, \quad y=a-b \cos \theta,
$$

where b is the distance of the moving point from the centre of the circle.

$$
\begin{array}{lll}
\text { For } \quad & b<a & \text { the curve is a curtate cycloid, } \\
b=a & \text { the curve is a basic cycloid, } \\
b>a & \text { the curve is a prolate cycloid. }
\end{array}
$$

The equivalent equations with the curve turned "upside down", and with the mid-height of the curve now on the x-axis, are

$$
x=a \theta-b \sin \theta, \quad y=b \cos \theta .
$$

(Notice that positive values of y are still measured vertically upwards.)

Modelling a particular wave

A question that now arises is how to fit an equation to a particular wave profile.
If you assume that the wave is a cycloid, there are two parameters to be found, a and b.

4754 (C4) Applications of Advanced Mathematics

Section A

1 $\begin{aligned} & \frac{x}{x^{2}-4}+\frac{2}{x+2}=\frac{x}{(x-2)(x+2)}+\frac{2}{x+2} \\ & =\frac{x+2(x-2)}{(x+2)(x-2)} \\ & =\frac{3 x-4}{(x+2)(x-2)} \end{aligned}$	M1 M1 A1 [3]	combining fractions correctly factorising and cancelling (may be $3 x^{2}+2 x-8$)
$2 \quad \begin{aligned} V & =\int_{0}^{1} \pi y^{2} d x=\int_{0}^{1} \pi\left(1+e^{2 x}\right) d x \\ & =\pi\left[x+\frac{1}{2} e^{2 x}\right]_{0}^{1} \\ & =\pi\left(1+\frac{1}{2} e^{2}-\frac{1}{2}\right) \\ & =\frac{1}{2} \pi\left(1+e^{2}\right)^{*} \end{aligned}$	M1 B1 M1 E1 [4]	must be πx their y^{2} in terms of x $\left[x+\frac{1}{2} e^{2 x}\right]$ only substituting both x limits in a function of x www
$\begin{array}{ll} 3 & \cos 2 \theta=\sin \theta \\ \Rightarrow & 1-2 \sin ^{2} \theta=\sin \theta \\ \Rightarrow & 1-\sin \theta-2 \sin ^{2} \theta=0 \\ \Rightarrow & (1-2 \sin \theta)(1+\sin \theta)=0 \\ \Rightarrow & \sin \theta=1 / 2 \text { or }-1 \\ \Rightarrow & \theta=\pi / 6,5 \pi / 6,3 \pi / 2 \end{array}$	M1 M1 A1 M1 A1 A2,1,0 [7]	$\cos 2 \theta=1-2 \sin ^{2} \theta$ oe substituted forming quadratic(in one variable) $=0$ correct quadratic www factorising or solving quadratic $1 / 2,-1$ oe www cao penalise extra solutions in the range
$\begin{aligned} & 4 \quad \begin{array}{l} \text { sec } \theta=x / 2, \tan \theta=y / 3 \\ \Rightarrow \quad \sec ^{2} \theta=1+\tan ^{2} \theta \\ \Rightarrow \quad x^{2} / 4=1+y^{2} / 9 \end{array} \\ & \Rightarrow \quad x^{2} / 4-y^{2} / 9=1^{*} \\ & \text { OR } \quad x^{2} / 4-y^{2} / 9=4 \sec ^{2} \theta / 4-9 \tan ^{2} \theta / 9 \\ & =\sec ^{2} \theta-\tan ^{2} \theta=1 \end{aligned}$	M1 M1 E1 [3]	$\sec ^{2} \theta=1+\tan ^{2} \theta$ used (oe, e.g. converting to sines and cosines and using $\cos ^{2} \theta+\sin ^{2} \theta=1$) eliminating θ (or x and y) www
$\begin{gathered} \text { 5(i) } \begin{array}{c} \mathrm{d} x / \mathrm{d} u=2 u, \mathrm{~d} y / \mathrm{d} u=6 u^{2} \\ \Rightarrow \quad \frac{d y}{d x}=\frac{d y / d u}{d x / d u}=\frac{6 u^{2}}{2 u} \\ =3 u \end{array} \end{gathered}$ OR $y=2(x-1)^{3 / 2}, d y / d x=3(x-1)^{1 / 2}=3 u$	B1 M1 A1 [3]	both $2 u$ and $6 u^{2}$ B1 $(y=\mathrm{f}(x)$), M1 differentiation, A1
	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	cao

$\begin{aligned} \mathbf{6 (i)}\left(1+4 x^{2}\right)^{-\frac{1}{2}} & =1-\frac{1}{2} \cdot 4 x^{2}+\frac{\left(-\frac{1}{2}\right) \cdot\left(-\frac{3}{2}\right)}{2!}\left(4 x^{2}\right)^{2}+\ldots \\ & =1-2 x^{2}+6 x^{4}+\ldots \end{aligned}$ Valid for $-1<4 x^{2}<1 \Rightarrow-1 / 2<x<1 / 2$	M1 A1 A1 M1A1 [5]	binomial expansion with $p=-1 / 2$ $\begin{aligned} & 1-2 x^{2} \ldots \\ & +6 x^{4} \end{aligned}$
$\text { (ii) } \begin{aligned} & \frac{1-x^{2}}{\sqrt{1+4 x^{2}}}=\left(1-x^{2}\right)\left(1-2 x^{2}+6 x^{4}+\ldots\right) \\ & =1-2 x^{2}+6 x^{4}-x^{2}+2 x^{4}+\ldots \\ & =1-3 x^{2}+8 x^{4}+\ldots \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	substitituting their $1-2 x^{2}+6 x^{4}+\ldots$ and expanding ft their expansion (of three terms) cao
$\begin{gathered} 7 \quad \sqrt{3} \sin x-\cos x=R \sin (x-\alpha) \\ \quad=R(\sin x \cos \alpha-\cos x \sin \alpha) \\ \Rightarrow \quad \sqrt{3}=R \cos \alpha, 1=R \sin \alpha \\ \Rightarrow \quad \\ R^{2}=3+1=4 \Rightarrow R=2 \\ \\ \quad \tan \alpha=1 / \sqrt{ } 3 \\ \Rightarrow \quad \alpha=\pi / 6 \\ \Rightarrow \quad y=2 \sin (x-\pi / 6) \end{gathered}$ Max when $x-\pi / 6=\pi / 2 \Rightarrow x=\pi / 6+\pi / 2=2 \pi / 3$ max value $y=2$ So maximum is $(2 \pi / 3,2)$	M1 B1 M1 A1 B1 B1 [6]	correct pairs soi $R=2$ ft cao www cao ft their R SC B1 ($2,2 \pi / 3$) no working

Section B

8(i) At A: $3 \times 0+2 \times 0+20 \times(-15)+300=0$ At B: $3 \times 100+2 \times 0+20 \times(-30)+300=0$ At C: $3 \times 0+2 \times 100+20 \times(-25)+300=0$ So ABC has equation $3 x+2 y+20 z+300=0$	M1 A2,1,0 [3]	substituting co-ords into equation of plane... for ABC OR using two vectors in the plane form vector product M1A1 then $3 x+2 y+20 z=c=-300 \mathrm{~A} 1$ OR using vector equation of plane M1,elim both parameters M1, A1
$\begin{aligned} & \text { (ii) } \overrightarrow{\mathrm{DE}}=\left(\begin{array}{l} 100 \\ 0 \\ -10 \end{array}\right) \quad \overrightarrow{\mathrm{DF}}=\left(\begin{array}{l} 0 \\ 100 \\ 5 \end{array}\right) \\ & \left(\begin{array}{l} 100 \\ 0 \\ -10 \end{array}\right) \cdot\left(\begin{array}{l} 2 \\ -1 \\ 20 \end{array}\right)=100 \times 2+0 \times-1+-10 \times 20=200-200=0 \\ & \left(\begin{array}{l} 0 \\ 100 \\ 5 \end{array}\right) \cdot\left(\begin{array}{l} 2 \\ -1 \\ 20 \end{array}\right)=0 \times 2+100 \times-1+5 \times 20=-100+100=0 \end{aligned}$ Equation of plane is $2 x-y+20 z=c$ At D (say) c $=20 \times-40=-800$ So equation is $2 x-y+20 z+800=0$	B1B1 B1 B1 M1 A1 [6]	need evaluation need evaluation
(iii) Angle is θ, where $\begin{aligned} & \cos \theta=\frac{\left(\begin{array}{l} 2 \\ -1 \\ 20 \end{array}\right) \cdot\left(\begin{array}{l} 3 \\ 2 \\ 20 \end{array}\right)}{\sqrt{2^{2}+(-1)^{2}+20^{2}} \sqrt{3^{2}+2^{2}+20^{2}}}=\frac{404}{\sqrt{405} \sqrt{413}} \\ & \Rightarrow \quad \theta=8.95^{\circ} \end{aligned}$	M1 A1 A1 A1cao [4]	formula with correct vectors top bottom (or 0.156 radians)
$\begin{aligned} & \text { (iv) } \mathrm{RS}: \mathbf{r}=\left(\begin{array}{l} 15 \\ 34 \\ 0 \end{array}\right)+\lambda\left(\begin{array}{l} 3 \\ 2 \\ 20 \end{array}\right) \\ & =\left(\begin{array}{l} 15+3 \lambda \\ 34+2 \lambda \\ 20 \lambda \end{array}\right) \\ & \Rightarrow \quad 3(15+3 \lambda)+2(34+2 \lambda)+20.20 \lambda+300=0 \\ & \Rightarrow \quad 45+9 \lambda+68+4 \lambda+400 \lambda+300=0 \\ & \Rightarrow \quad 413+413 \lambda=0 \\ & \Rightarrow \quad \begin{array}{l} \lambda=-1 \\ \\ \\ \text { so } S \text { is }(12,32,-20) \end{array} \end{aligned}$	B1 B1 M1 A1 A1 [5]	$\left(\begin{array}{l} 15 \\ 34 \\ 0 \end{array}\right)+\ldots$ $\ldots+\lambda\left(\begin{array}{l} 3 \\ 2 \\ 20 \end{array}\right)$ solving with plane $\lambda=-1$ cao

$\begin{aligned} & 9(\mathbf{i}) v=\int 10 e^{-\frac{1}{2} t} d t \\ &=-20 e^{-\frac{1}{2} t}+c \\ & \text { when } t=0, v=0 \\ & \Rightarrow \quad 0=-20+c \\ & \Rightarrow \quad c=20 \\ & \\ & \text { so } v=20-20 e^{-\frac{1}{2} t} \end{aligned}$	M1 A1 M1 A1 [4]	separate variables and intend to integrate $\begin{aligned} & -20 e^{-\frac{1}{2} t} \\ & \text { finding } c \end{aligned}$ cao
$\begin{array}{\|l} \text { (ii) } \quad \text { As } t \rightarrow \infty \quad \mathrm{e}^{-1 / 2 t} \rightarrow 0 \\ \Rightarrow \quad v \rightarrow 20 \\ \text { So long term speed is } 20 \mathrm{~m} \mathrm{~s}^{-1} \end{array}$	M1 A1 [2]	ft (for their $c>0$, found)
$\begin{aligned} & \text { (iii) } \begin{aligned} & \frac{1}{(w-4)(w+5)}=\frac{A}{w-4}+\frac{B}{w+5} \\ &=\frac{A(w+5)+B(w-4)}{(w-4)(w+5)} \\ & \Rightarrow \quad 1 \equiv A(w+5)+B(w-4) \end{aligned} \\ & \begin{aligned} & w=4: 1=9 A \Rightarrow A=1 / 9 \\ & w=-5: 1=-9 B \Rightarrow B=-1 / 9 \\ & \Rightarrow \frac{1}{(w-4)(w+5)}=\frac{1 / 9}{w-4}-\frac{1 / 9}{w+5} \\ &=\frac{1}{9(w-4)}-\frac{1}{9(w+5)} \end{aligned} \end{aligned}$	M1 M1 A1 A1 [4]	cover up, substitution or equating coeffs $1 / 9$ $-1 / 9$
$\begin{aligned} & \text { (iv) } \frac{d w}{d t}=-\frac{1}{2}(w-4)(w+5) \\ & \Rightarrow \int \frac{d w}{(w-4)(w+5)}=\int-\frac{1}{2} d t \\ & \Rightarrow \int\left[\frac{1}{9(w-4)}-\frac{1}{9(w+5)}\right] d w=\int-\frac{1}{2} d t \\ & \Rightarrow \frac{1}{9} \ln (w-4)-\frac{1}{9} \ln (w+5)=-\frac{1}{2} t+c \\ & \Rightarrow \frac{1}{9} \ln \frac{w-4}{w+5}=-\frac{1}{2} t+c \\ & \text { When } t=0, w=10 \Rightarrow c=\frac{1}{9} \ln \frac{6}{15}=\frac{1}{9} \ln \frac{2}{5} \\ & \Rightarrow \ln \frac{w-4}{w+5}=-\frac{9}{2} t+\ln \frac{2}{5} \\ & \Rightarrow \frac{w-4}{w+5}=e^{-\frac{9}{2} t+\ln \frac{2}{5}}=\frac{2}{5} e^{-\frac{9}{2} t}=0.4 e^{-4.51} * \end{aligned}$	M1 M1 A1ft M1 M1 E1 [6]	separating variables substituting their partial fractions integrating correctly (condone absence of c) correctly evaluating c (at any stage) combining lns (at any stage) www
$\begin{aligned} & \quad \text { (v) As } t \rightarrow \infty \quad \mathrm{e}^{-4.5 t} \rightarrow 0 \\ & \Rightarrow \quad w-4 \rightarrow 0 \\ & \text { So long term speed is } 4 \mathrm{~m} \mathrm{~s}^{-1} . \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	

Comprehension

1. (i)
(ii)

2	3	1
3	1	2
1	2	3

B1
cao

B1
cao
2. Dividing the grid up into four 2×2 blocks gives

1	2	3	4
3	1	4	2
2	4	1	3
4	3	2	1

Lines drawn on diagram or reference to 2×2 blocks.
3.

1	2	3	4
4	3	1	2
2	1	4	3
3	4	2	1

Many possible answers Row 2 correct
Rest correct
4. Either

Or

B2
6.
(i)

Block side length, b	Sudoku, $s \times s$	M
1	1×1	-
2	4×4	12
3	9×9	77
4	25×25	621
5		252

(ii) $\quad M=b^{4}-4$
7.
(i) There are neither 3 s nor 5 s among the givens. M1

So they are interchangeable and therefore there is no unique solution E1
(ii) The missing symbols form a 3×3 embedded Latin square. M1

There is not a unique arrangement of the numbers 1,2 and 3 in this E1 square.

4754 (C4) Applications of Advanced Mathematics

Section A

$\begin{aligned} & 1 \quad \frac{3 x+2}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{\left(x^{2}+1\right)} \\ & \Rightarrow \quad 3 x+2=A\left(x^{2}+1\right)+(B x+C) x \\ & \text { coefft of } x^{2}: 0 \Rightarrow 2=A+B \Rightarrow B=-2 \\ & \text { coefft of } x: 3=C \\ & \Rightarrow \quad \frac{3 x+2}{x\left(x^{2}+1\right)}=\frac{2}{x}+\frac{3-2 x}{\left(x^{2}+1\right)} \end{aligned}$	M1 M1 B1 M1 A1 A1 [6]	correct partial fractions equating coefficients at least one of B, C correct
2(i) $\left.\begin{array}{l} \begin{array}{rl} (1+2 x)^{1 / 3}=1+\frac{1}{3} \cdot 2 x+\frac{\frac{1}{3} \cdot\left(-\frac{2}{3}\right)}{2!}(2 x)^{2}+\ldots \\ =1+\frac{2}{3} x-\frac{2}{18} 4 x^{2}+\ldots \\ =1+\frac{2}{3} x-\frac{4}{9} x^{2}+\ldots \end{array} \\ \text { Next term }=\frac{\frac{1}{3} \cdot\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(2 x)^{3} \\ =\frac{40}{81} x^{3} \end{array}\right\} \begin{aligned} & \text { Valid for }-1<2 x<1 \\ & \Rightarrow-1 / 2<x<1 / 2 \end{aligned}$	M1 A1 E1 M1 A1 B1 [6]	binomial expansion correct unsimplified expression simplification www
$\begin{array}{ll} 3 & 4 \mathbf{j}-3 \mathbf{k}=\lambda \mathbf{a}+\mu \mathbf{b} \\ & =\lambda(2 \mathbf{i}+\mathbf{j}-\mathbf{k})+\mu(4 \mathbf{i}-2 \mathbf{j}+\mathbf{k}) \\ \Rightarrow \quad & 0=2 \lambda+4 \mu \\ & 4=\lambda-2 \mu \\ & -3=-\lambda+\mu \\ \Rightarrow & \lambda=-2 \mu, 2 \lambda=4 \Rightarrow \lambda=2, \mu=-1 \end{array}$	M1 M1 A1 A1, A1 [5]	equating components at least two correct equations
4 $\begin{aligned} \text { LHS }= & \cot \beta-\cot \alpha \\ & =\frac{\cos \beta}{\sin \beta}-\frac{\cos \alpha}{\sin \alpha} \\ & =\frac{\sin \alpha \cos \beta-\cos \alpha \sin \beta}{\sin \alpha \sin \beta} \\ & =\frac{\sin (\alpha-\beta)}{\sin \alpha \sin \beta} \end{aligned}$ OR $\begin{gathered} \text { RHS }=\frac{\sin (\alpha-\beta)}{\sin \alpha \sin \beta}=\frac{\sin \alpha \cos \beta}{\sin \alpha \sin \beta}-\frac{\cos \alpha \sin \beta}{\sin \alpha \sin \beta} \\ =\cot \beta-\cot \alpha \end{gathered}$	M1 M1 E1 M1 M1 E1 [3]	$\cot =\cos / \sin$ combining fractions www using compound angle formula splitting fractions using cot=cos/sin

5(i) Normal vectors $\left(\begin{array}{l}2 \\ -1 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 0 \\ -1\end{array}\right)$ Angle between planes is θ, where $\begin{aligned} & \cos \theta=\frac{2 \times 1+(-1) \times 0+1 \times(-1)}{\sqrt{2^{2}+(-1)^{2}+1^{2}} \sqrt{1^{2}+0^{2}+(-1)^{2}}} \\ & \\ & =\quad 1 / \sqrt{ } 12 \end{aligned}$	B1 M1 M1 A1 [4]	scalar product finding invcos of scalar product divided by two modulae
$\text { (ii) } \begin{aligned} \mathbf{r} & =\left(\begin{array}{l} 2 \\ 0 \\ 1 \end{array}\right)+\lambda\left(\begin{array}{l} 2 \\ -1 \\ 1 \end{array}\right) \\ & =\left(\begin{array}{l} 2+2 \lambda \\ -\lambda \\ 1+\lambda \end{array}\right) \\ \Rightarrow & 2(2+2 \lambda)-(-\lambda)+(1+\lambda)=2 \\ \Rightarrow & 5+6 \lambda=2 \\ \Rightarrow & \lambda=-1 / 2 \end{aligned}$ So point of intersection is ($1,1 / 2,1 / 2$)	$\begin{aligned} & \text { B1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1] } \end{aligned}$	
6(i) $\begin{aligned} & \cos \theta+\sqrt{3} \sin \theta=r \cos (\theta-\alpha) \\ & \quad=R \cos \theta \cos \alpha+R \sin \theta \sin \alpha \\ & \Rightarrow R \cos \alpha=1, R \sin \alpha=\sqrt{3} \\ & \Rightarrow R^{2}=1^{2}+(\sqrt{3})^{2}=4, R=2 \\ & \tan \alpha=\sqrt{3} \\ & \Rightarrow \alpha=\pi / 3 \end{aligned}$	B1 M1 M1 A1 [4]	$R=2$ equating correct pairs $\tan \alpha=\sqrt{3} \text { о.e. }$
(ii) derivative of $\tan \theta$ is $\sec ^{2} \theta$ $\begin{aligned} \int_{0}^{\frac{\pi}{3}} \frac{1}{(\cos \theta+\sqrt{3} \sin \theta)^{2}} d \theta=\int_{0}^{\frac{\pi}{3}} \frac{1}{4} & \sec ^{2}\left(\theta-\frac{\pi}{3}\right) d \theta \\ & =\left[\frac{1}{4} \tan \left(\theta-\frac{\pi}{3}\right)\right]_{0}^{\frac{\pi}{3}} \\ & =1 / 4(0-(-\sqrt{3})) \\ & =\sqrt{ } 3 / 4 * \end{aligned}$	B1 M1 A1 E1 [4]	ft their α $\frac{1}{R^{2}}[\tan (\theta-\pi / 3] \text { ft their } \mathrm{R}, \alpha(\text { in radians })$ www

Section B

7(i) (A) $9 / 1.5=6$ hours (B) $18 / 1.5=12$ hours	B1 B1 [2]	
$\text { (ii) } \begin{array}{ll} & \frac{\mathrm{d} \theta}{\mathrm{~d} t}=-k\left(\theta-\theta_{0}\right) \\ \Rightarrow \quad & \int \frac{d \theta}{\theta-\theta_{0}}=\int-k d t \\ \Rightarrow \quad & \ln \left(\theta-\theta_{0}\right)=-k t+c \\ & \theta-\theta_{0}=e^{-k t+c} \\ & \theta=\theta_{0}+A e^{-k t *} \end{array}$	M1 A1 A1 M1 E1 [5]	separating variables $\ln \left(\theta-\theta_{0}\right)$ $-k t+c$ anti-logging correctly(with c) $A=e^{c}$
$\begin{aligned} & \text { (iii) } \quad \begin{array}{l} 98=50+A \mathrm{e}^{0} \\ \Rightarrow \quad A=48 \end{array} \\ & \text { Initially } \frac{\mathrm{d} \theta}{\mathrm{~d} t}=-k(98-50)=-48 k=-1.5 \\ & \Rightarrow \quad k=0.03125^{*} \end{aligned}$	M1 A1 M1 E1 [4]	
(iv) $\begin{aligned} & \text { (A) } 89=50+48 e^{-0.03125 t} \\ & \Rightarrow \quad 39 / 48=\mathrm{e}^{-0.03125 t} \\ & \Rightarrow \quad t=\ln (39 / 48) /(-0.03125)=6.64 \text { hours } \end{aligned}$ $\begin{aligned} & \text { (B) } 80=50+48 e^{-0.0315 t} \\ & \Rightarrow \quad 30 / 48=\mathrm{e}^{-0.03125 t} \\ & \Rightarrow \quad t=\ln (30 / 48) /(-0.03125)=15 \text { hours } \end{aligned}$	M1 M1 A1 M1 A1 [5]	equating taking lns correctly for either
(v) Models disagree more for greater temperature loss	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	

$\text { 8(i) } \begin{aligned} \frac{d y}{d \theta} & =2 \cos 2 \theta-2 \sin \theta, \frac{d x}{d \theta}=2 \cos \theta \\ \frac{d y}{d x} & =\frac{d y / d \theta}{d x / d \theta} \\ \frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{2 \cos 2 \theta-2 \sin \theta}{2 \cos \theta}=\frac{\cos 2 \theta-\sin \theta}{\cos \theta} \end{aligned}$	B1, B1 M1 A1 [4]	substituting for theirs oe
$\begin{aligned} & \text { (ii) When } \theta=\pi / 6, \begin{aligned} \frac{d y}{d x} & =\frac{\cos \pi / 3-\sin \pi / 6}{\cos \pi / 6} \\ & =\frac{1 / 2-1 / 2}{\sqrt{3} / 2}=0 \end{aligned} \\ & \text { Coords of B: } x=2+2 \sin (\pi / 6)=3 \\ & y= \end{aligned} \begin{aligned} y & \cos (\pi / 6)+\sin (\pi / 3)=3 \sqrt{ } 3 / 2 \end{aligned} \quad \begin{aligned} \mathrm{BC}=2 \times 3 \sqrt{ } 3 / 2 & =3 \sqrt{ } 3 \end{aligned}$	E1 M1 A1,A1 B1ft [5]	for either exact
(iii) (A) $\begin{aligned} y & =2 \cos \theta+\sin 2 \theta \\ & =2 \cos \theta+2 \sin \theta \cos \theta \\ & =2 \cos \theta(1+\sin \theta) \\ & =x \cos \theta^{*} \end{aligned}$ $\begin{aligned} (B) \sin \theta & =1 / 2(x-2) \\ \cos ^{2} \theta & =1-\sin ^{2} \theta \\ & =1-1 / 4(x-2)^{2} \\ & =1-1 / 4 x^{2}+x-1 \\ & =\left(x-1 / 4 x^{2}\right)^{*} \end{aligned}$ (C) $\text {) Cartesian equation is } \begin{aligned} y^{2} & =x^{2} \cos ^{2} \theta \\ & =x^{2}\left(x-1 / 4 x^{2}\right) \\ & =x^{3}-1 / 4 x^{4 *} \end{aligned}$	M1 E1 B1 M1 E1 M1 E1 [7]	$\sin 2 \theta=2 \sin \theta \cos \theta$ squaring and substituting for x
$\text { (iv) } \begin{aligned} V & =\int_{0}^{4} \pi y^{2} d x \\ & =\pi \int_{0}^{4}\left(x^{3}-\frac{1}{4} x^{4}\right) d x \\ & =\pi\left[\frac{1}{4} x^{4}-\frac{1}{20} x^{5}\right]_{0}^{4} \\ & =\pi(64-51.2) \\ & =12.8 \pi=40.2\left(\mathrm{~m}^{3}\right) \end{aligned}$	M1 B1 A1 [3]	need limits $\left[\frac{1}{4} x^{4}-\frac{1}{20} x^{5}\right]$ 12.8π or 40 or better.

Comprehension

1	$\begin{aligned} & \frac{400 \pi d}{1000}=10 \\ & d=\frac{25}{\pi}=7.96 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$	
2	$\begin{aligned} & V=\pi 20^{2} h+\frac{1}{2}\left(\pi 20^{2} H-\pi 20^{2} h\right) \\ & =\frac{1}{2}\left(\pi 20^{2} H+\pi 20^{2} h\right) \mathrm{cm}^{3}=200 \pi(H+h) \mathrm{cm}^{3} \\ & =\frac{1}{5} \pi(H+h) \text { litres } \end{aligned}$	M1 M1 E1	divide by 1000
3	$\begin{aligned} & H=5+40 \tan 30^{\circ} \text { or } H=h+40 \tan \theta \\ & V=\frac{1}{5} \pi(H+h)=\frac{1}{5} \pi\left(10+40 \tan 30^{\circ}\right) \\ & =20.8 \text { litres } \end{aligned}$	B1 M1 A1	or evaluated including substitution values
4	$\begin{aligned} & V=\frac{1}{2} \times 80 \times(40+5) \\ & \times 30 \mathrm{~cm}^{3}=54000 \mathrm{~cm}^{3} \\ &=54 \text { litres } \end{aligned}$	M1 M1 A1	$\times 30$
5	(i) Accurate algebraic simplification to give $y^{2}-160 y+400=0$ (ii) Use of quadratic formula (or other method) to find other root: $d=157.5 \mathrm{~cm}$. This is greater than the height of the tank so not possible	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \end{aligned}$	
6	$y=10$ Substitute for y in (4) : $\begin{aligned} & V=\frac{1}{1000} \int_{0}^{100} 375 \mathrm{~d} x \\ & V=\frac{1}{1000} \times 37500=37.5^{*} \end{aligned}$	B1 M1 E1 [18]	

4754 (C4) Applications of Advanced Mathematics

Section A

$\begin{array}{ll} 1 & 4 \cos \theta-\sin \theta=R \cos (\theta+\alpha) \\ & =R \cos \theta \cos \alpha-R \sin \theta \sin \alpha \\ & \Rightarrow R \cos \alpha=4, R \sin \alpha=1 \\ & \Rightarrow R^{2}=1^{2}+4^{2}=17, R=\sqrt{ } 17=4.123 \\ & \tan \alpha=1 / 4 \\ & \Rightarrow \alpha=0.245 \\ & \sqrt{ } 17 \cos (\theta+0.245)=3 \\ \Rightarrow & \cos (\theta+0.245)=3 / \sqrt{ } 17 \\ \Rightarrow & \theta+0.245=0.756,5.527 \\ \Rightarrow & \theta=0.511,5.282 \end{array}$	M1 B1 M1 A1 M1 A1A1 [7]	correct pairs $\begin{aligned} & R=\sqrt{ } 17=4.123 \\ & \tan \alpha=1 / 4 \text { o.e. } \\ & \alpha=0.245 \end{aligned}$ $\theta+0.245=\operatorname{arcos} 3 / \sqrt{ } 17$ ft their R, α for method (penalise extra solutions in the range (-1))
$\begin{aligned} 2 & \frac{x}{(x+1)(2 x+1)}=\frac{A}{x+1}+\frac{B}{(2 x+1)} \\ \Rightarrow \quad & x=A(2 x+1)+B(x+1) \\ & x=-1 \Rightarrow-1=-A \Rightarrow A=1 \\ \Rightarrow \quad & \frac{x}{(x+1)(2 x+1)}=-1 / 2 \Rightarrow-1 / 2=1 / 2 B \Rightarrow B=-1 \\ \Rightarrow \quad & \int \frac{x}{x+1}-\frac{1}{(2 x+1)} \\ & \\ & \\ & \\ & =\int \frac{1}{x+1)(2 x+1)}-\frac{1}{(2 x+1)} d x \\ & =\ln (x+1)-1 / 2 \ln (2 x+1)+c \end{aligned}$	M1 M1 A1 A1 B1 B1 A1 [7]	correct partial fractions substituting, equating coeffts or cover-up $\begin{aligned} & A=1 \\ & B=-1 \end{aligned}$ $\ln (x+1) \mathrm{ft}$ their A $-1 / 2 \ln (2 x+1) \mathrm{ft}$ their B cao - must have c
$\begin{array}{ll} & 3 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2} y \\ \Rightarrow & \int \frac{\mathrm{~d} y}{y}=\int 3 x^{2} \mathrm{~d} x \\ \Rightarrow & \ln y=x^{3}+c \\ \Rightarrow & \text { When } x=1, y=1, \Rightarrow \ln 1=1+c \Rightarrow c=-1 \\ \Rightarrow & \ln y=x^{3}-1 \\ & y=e^{x^{3}-1} \end{array}$	M1 A1 B1 A1 [4]	separating variables condone absence of c $c=-1$ oe o.e.
$\begin{array}{cl} 4 & \text { When } x=0, y=4 \\ \Rightarrow \quad & V=\pi \int_{0}^{4} x^{2} d y \\ & =\pi \int_{0}^{4}(4-y) d y \\ & =\pi\left[4 y-\frac{1}{2} y^{2}\right]_{0}^{4} \\ & =\pi(16-8)=8 \pi \end{array}$	B1 M1 M1 B1 A1 [5]	must have integral, π, x^{2} and $d y$ soi must have π,their (4-y), their numerical y limits $\left[4 y-\frac{1}{2} y^{2}\right]$

	M1 A1 B1 M1 E1 M1 A1 [7]	$\left(1+t^{2}\right)^{-2} \times k t$ for method ft finding t
$\begin{array}{ll} \mathbf{6} & \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta \\ \Rightarrow & 1+\cot ^{2} \theta-\cot \theta=3 * \\ \Rightarrow & \cot ^{2} \theta-\cot \theta-2=0 \\ \Rightarrow & (\cot \theta-2)(\cot \theta+1)=0 \\ \Rightarrow & \cot \theta=2, \tan \theta=1 / 2, \theta=26.57^{\circ} \\ & \cot \theta=-1, \tan \theta=-1, \theta=135^{\circ} \end{array}$	$\begin{aligned} & \text { E1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[6]} \end{aligned}$	clear use of $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$ factorising or formula roots 2, -1 $\cot =1 /$ tan used $\theta=26.57^{\circ}$ $\theta=135^{\circ}$ (penalise extra solutions in the range (-1))

Section B

7(i) $\begin{aligned} & \overrightarrow{\mathrm{AB}}=\left(\begin{array}{l} -1 \\ -2 \\ 0 \end{array}\right) \\ & \mathbf{r}=\left(\begin{array}{l} 0 \\ 0 \\ 2 \end{array}\right)+\lambda\left(\begin{array}{l} 1 \\ 2 \\ 0 \end{array}\right) \end{aligned}$	B1 B1 [2]	or equivalent alternative
$\begin{aligned} & \text { (ii) } \quad \mathbf{n}=\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right) \\ & \Rightarrow \quad \cos \theta=\frac{\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right) \cdot\left(\begin{array}{l} 1 \\ 2 \\ \sqrt{2} \end{array}\right)}{\sqrt{5}}=\frac{1}{\sqrt{10}} \\ & \Rightarrow=71.57^{\circ} \end{aligned}$	B1 B1 M1 M1 A1 [5]	correct vectors (any multiples) scalar product used finding invcos of scalar product divided by two modulae 72° or better
$\begin{aligned} & \text { (iii) } \cos \phi=\frac{\left(\begin{array}{c} -1 \\ 0 \\ -1 \end{array}\right) \cdot\left(\begin{array}{l} -2 \\ -2 \\ -1 \end{array}\right)}{\sqrt{2} \sqrt{9}}=\frac{2+1}{3 \sqrt{2}}=\frac{1}{\sqrt{2}} \\ & \Rightarrow \quad \phi=45^{\circ} * \end{aligned}$	M1 A1 E1 [3]	ft their \mathbf{n} for method $\pm 1 / \sqrt{ } 2$ oe exact
$\begin{aligned} & \text { (iv) } \sin 71.57^{\circ}=k \sin 45^{\circ} \\ & \Rightarrow \quad k=\sin 71.57^{\circ} / \sin 45^{\circ}=1.34 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	ft on their 71.57° oe
$\text { (v) } \begin{aligned} & \mathbf{r}=\left(\begin{array}{l} 0 \\ 0 \\ 2 \end{array}\right)+\mu\left(\begin{array}{l} -2 \\ -2 \\ -1 \end{array}\right) \\ & x=-2 \mu, z=2-\mu \\ & x+z=-1 \\ & \Rightarrow \quad-2 \mu+2-\mu=-1 \\ & \Rightarrow \quad 3 \mu=3, \mu=1 \\ & \Rightarrow \quad \text { point of intersection is }(-2,-2,1) \\ & \text { distance travelled through glass } \\ &=\text { distance between }(0,0,2) \text { and }(-2,-2,1) \\ &=\sqrt{ }\left(2^{2}+2^{2}+1^{2}\right)=3 \mathrm{~cm} \end{aligned}$	M1 M1 A1 A1 B1 [5]	soi subst in $x+z=-1$ www dep on $\mu=1$

8(i) $\begin{array}{ll} \text { (A) } & 360^{\circ} \div 24=15^{\circ} \\ & \mathrm{CB} / \mathrm{OB}=\sin 15^{\circ} \\ \Rightarrow & \mathrm{CB}=1 \sin 15^{\circ} \\ \Rightarrow & \mathrm{AB}=2 \mathrm{CB}=2 \sin 15^{\circ} * \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & \text { [2] } \end{aligned}$	$\begin{aligned} & \mathrm{AB}=2 \mathrm{AC} \text { or } 2 \mathrm{CB} \\ & \angle \mathrm{AOC}=15^{\circ} \\ & \text { oe } \end{aligned}$
$\begin{array}{ll} \text { (B) } & \cos 30^{\circ}=1-2 \sin ^{2} 15^{\circ} \\ & \cos 30^{\circ}=\sqrt{ } 3 / 2 \\ \Rightarrow & \sqrt{3} / 2=1-2 \sin ^{2} 15^{\circ} \\ \Rightarrow & 2 \sin ^{2} 15^{\circ}=1-\sqrt{3} / 2=(2-\sqrt{ } 3) / 2 \\ \Rightarrow & \sin ^{2} 15^{\circ}=(2-\sqrt{3}) / 4 \\ \Rightarrow & \sin 15^{\circ}=\sqrt{\frac{2-\sqrt{3}}{4}}=\frac{1}{2} \sqrt{2-\sqrt{3}} * \end{array}$	B1 B1 M1 E1 [4]	simplifying
$\begin{aligned} & \text { (C) } \begin{aligned} \text { Perimeter } & =12 \times \mathrm{AB}=24 \times 1 / 2 \sqrt{ }(2-\sqrt{ } 3) \\ & =12 \sqrt{ }(2-\sqrt{ } 3) \end{aligned} \\ & \text { circumference of circle }>\text { perimeter of polygon } \\ & \Rightarrow \quad 2 \pi>12 \sqrt{ }(2-\sqrt{ } 3) \\ & \Rightarrow \quad \pi>6 \sqrt{ }(2-\sqrt{ } 3) \end{aligned}$	M1 E1 [2]	
$\text { (ii) } \begin{aligned} & \text { (A) } \tan 15^{\circ}=\mathrm{FE} / \mathrm{OF} \\ & \Rightarrow \quad \mathrm{FE}=\tan 15^{\circ} \\ & \Rightarrow \quad \mathrm{DE}=2 \mathrm{FE}=2 \tan 15^{\circ} \end{aligned}$	M1 E1 [2]	
$\begin{aligned} & \text { (B) } \tan 30=\frac{2 \tan 15}{1-\tan ^{2} 15}=\frac{2 t}{1-t^{2}} \\ & \tan 30=1 / \sqrt{3} \\ & \Rightarrow \quad \frac{2 t}{1-t^{2}}=\frac{1}{\sqrt{3}} \Rightarrow 2 \sqrt{3} t=1-t^{2} \\ & \Rightarrow \quad t^{2}+2 \sqrt{ } 3 t-1=0^{*} \end{aligned}$	B1 M1 E1 [3]	
$\begin{array}{ll} \text { (C) } & t=\frac{-2 \sqrt{3} \pm \sqrt{12+4}}{2}=2-\sqrt{3} \\ & \text { circumference }<\text { perimeter } \\ \Rightarrow & 2 \pi<24(2-\sqrt{ } 3) \\ \Rightarrow & \pi<12(2-\sqrt{ } 3)^{*} \end{array}$	M1 A1 M1 E1 [4]	using positive root from exact working
$\begin{array}{ll} \text { (iii) } & 6 \sqrt{ }(2-\sqrt{ } 3)<\pi<12(2-\sqrt{ } 3) \\ \Rightarrow & 3.106<\pi<3.215 \end{array}$	$\begin{aligned} & \text { B1 B1 } \\ & \text { [2] } \end{aligned}$	3.106, 3.215

Comprehension

1. $\frac{1}{4} \times[3+1+(-1)+(-2)]=0.25$ *

M1, E1
2. (i) b is the benefit of shooting some soldiers from the other side while none of yours are shot. w is the benefit of having some of your own soldiers shot while not shooting any from the other side.

Since it is more beneficial to shoot some of the soldiers on the other side than it is to have your own soldiers shot, $b>w$.

E1
(ii) c is the benefit from mutual co-operation (i.e. no shooting). d is the benefit from mutual defection (soldiers on both sides are shot). With mutual co-operation people don't get shot, while they do with mutual defection. So $c>d$.

E1
3. $\frac{1 \times 2+(-2) \times(n-2)}{n}=-1.999$ or equivalent (allow $n, n+2$) M1, A1
$n=6000$ so you have played 6000 rounds.
A1
4. No. The inequality on line 132, $b+w<2 c$, would not be satisfied since
$6+(-3)>2 \times 1$.
M1 b+w<2c and subst
A1 No,3>2oe
5. (i)

Round	You	Opponent	Your score	Opponent's score
1	C	D	-2	3
2	D	C	3	-2
3	C	D	-2	3
4	D	C	3	-2
5	C	D	-2	3
6	D	C	3	-2
7	C	D	-2	3
8	D	C	3	-2
\ldots	\ldots	\ldots	\ldots	\ldots

M1 Cs and Ds in correct places, A1 C=-2, A1 D=3
(ii) $\frac{1}{2} \times[3+(-2)]=0.5$

DM1 A1ft their 3,-2
6. (i) All scores are increased by two points per round

B1
(ii) The same player wins. No difference/change. The rank order of the players remains the same.
7. (i) They would agree to co-operate by spending less on advertising or by sharing equally.

B1
(ii) Increased market share (or more money or more customers).

DB1

4754 (C4) Applications of Advanced Mathematics

1		$\begin{aligned} & \frac{1+2 x}{(1-2 x)^{2}}=(1+2 x)(1-2 x)^{-2} \\ & =(1+2 x)\left[1+(-2)(-2 x)+\frac{(-2)(-3)}{1.2}(-2 x)^{2}+\ldots\right] \\ & =(1+2 x)\left[1+4 x+12 x^{2}+\ldots\right] \\ & =1+4 x+12 x^{2}+2 x+8 x^{2}+\ldots \\ & =1+6 x+2 x^{2}+\ldots \end{aligned}$ Valid for $-1<-2 x<1$ $\Rightarrow-1 / 2<x<1 / 2$	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { [7] } \end{array}$	binomial expansion power -2 unsimplified,correct sufficient terms
2		$\begin{array}{ll} & \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta} \\ \Rightarrow \quad & \cot 2 \theta=\frac{1}{\tan 2 \theta}=\frac{1-\tan ^{2} \theta}{2 \tan \theta} * \\ & \cot 2 \theta=1+\tan \theta \\ \Rightarrow \quad & \frac{1-\tan ^{2} \theta}{2 \tan \theta}=1+\tan \theta \\ \Rightarrow \quad & 1-\tan ^{2} \theta=2 \tan \theta+2 \tan ^{2} \theta \\ \Rightarrow \quad & 3 \tan ^{2} \theta+2 \tan \theta-1=0 \\ \Rightarrow \quad & (3 \tan \theta-1)(\tan \theta+1)=0 \\ \Rightarrow \quad & \tan \theta=1 / 3, \theta=18.43^{\circ}, 198.43^{\circ} \\ & \text { or } \tan \theta=-1, \theta=135^{\circ}, 315^{\circ} \end{array}$	M1 E1 M1 M1 A3,2,1, 0 [7]	oe eg converting either side into a one line fraction(s) involving $\sin \theta$ and $\cos \theta$. quadratic $=0$ factorising or solving $18.43^{\circ}, 198.43^{\circ}, 135^{\circ}, 315^{\circ}$ -1 extra solutions in the range
3	(i)	$\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} t} & =\frac{(1+t) \cdot 2-2 t \cdot 1}{(1+t)^{2}}=\frac{2}{(1+t)^{2}} \\ \frac{\mathrm{~d} x}{\mathrm{~d} t} & =2 \mathrm{e}^{2 t} \\ \frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y / \mathrm{d} t}{\mathrm{~d} x / \mathrm{d} t} \\ \Rightarrow \quad \frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{2}{(1+t)^{2}} \\ 2 \mathrm{e}^{2 t} & =\frac{1}{\mathrm{e}^{2 t}(1+t)^{2}} \\ t & =0 \Rightarrow \mathrm{~d} y / \mathrm{d} x=1 \end{aligned}$	$\begin{aligned} & \text { M1A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { B1ft } \\ & {[6]} \end{aligned}$	

	(ii)	$\Rightarrow \quad \begin{aligned} 2 t & =\ln x \Rightarrow t=1 / 2 \ln x \\ y & =\frac{\ln x}{1+\frac{1}{2} \ln x}=\frac{2 \ln x}{2+\ln x} \end{aligned}$	M1 A1 [2]	or t in terms of y
4	(i)	$\overrightarrow{\mathrm{AB}}=\left(\begin{array}{l}-2 \\ -1 \\ -1\end{array}\right), \overrightarrow{\mathrm{AC}}=\left(\begin{array}{l}-1 \\ -11 \\ 3\end{array}\right)$	B1 B1 [2]	
	(ii)	$\begin{aligned} & \text { n. } \overrightarrow{\mathrm{AB}}=\left(\begin{array}{l} 2 \\ -1 \\ -3 \end{array}\right) \cdot\left(\begin{array}{l} -2 \\ -1 \\ -1 \end{array}\right)=-4+1+3=0 \\ & \text { n. } \overrightarrow{\mathrm{AC}}=\left(\begin{array}{l} 2 \\ -1 \\ -3 \end{array}\right) \cdot\left(\begin{array}{l} -1 \\ -11 \\ 3 \end{array}\right)=-2+11-9=0 \\ & \Rightarrow \quad \text { plane is } 2 x-y-3 z=d \\ & x=1, y=3, z=-2 \Rightarrow d=2-3+6=5 \\ & \Rightarrow \quad \text { plane is } 2 x-y-3 z=5 \end{aligned}$	M1 E1 E1 M1 A1 [5]	scalar product
5	(i)	$\begin{aligned} & x=-5+3 \lambda=1 \Rightarrow \lambda=2 \\ & y=3+2 \times 0=3 \\ & z=4-2=2, \text { so }(1,3,2) \text { lies on } 1 \text { st line. } \\ & x=-1+2 \mu=1 \Rightarrow \mu=1 \\ & y=4-1=3 \\ & z=2+0=2, \text { so }(1,3,2) \text { lies on } 2^{\text {nd }} \text { line. } \end{aligned}$	M1 E1 E1 [3]	finding λ or μ verifying two other coordinates for line 1 verifying two other coordinates for line 2
	(ii)	$\begin{aligned} & \text { Angle between }\left(\begin{array}{l} 3 \\ 0 \\ -1 \end{array}\right) \text { and }\left(\begin{array}{l} 2 \\ -1 \\ 0 \end{array}\right) \\ & \cos \theta=\frac{3 \times 2+0 \times(-1)+(-1) \times 0}{\sqrt{10} \sqrt{5}} \\ & \Rightarrow \quad \theta=31.9^{\circ} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	direction vectors only allow M1 for any vectors or 0.558 radians

6	(i)	$\begin{aligned} & \\ & \mathrm{BAC}=120-90-(90-\theta) \\ & =\theta-60 \\ \Rightarrow \quad & \mathrm{BC}=b \sin (\theta-60) \\ \Rightarrow \quad & \mathrm{CD}=\mathrm{AE}=a \sin \theta \\ \Rightarrow \quad & h \mathrm{BC}+\mathrm{CD}=a \sin \theta+b \sin \left(\theta-60^{\circ}\right) * \end{aligned}$	B1 M1 E1 [3]	
	(ii)	$\begin{aligned} h & =a \sin \theta+b \sin \left(\theta-60^{\circ}\right) \\ & =a \sin \theta+b(\sin \theta \cos 60-\cos \theta \sin 60) \\ & =a \sin \theta+1 / 2 b \sin \theta-\sqrt{3 / 2} b \cos \theta \\ & =\left(a+\frac{1}{2} b\right) \sin \theta-\frac{\sqrt{3}}{2} b \cos \theta * \end{aligned}$	M1 M1 E1 [3]	corr compound angle formula $\sin 60=\sqrt{ } 3 / 2, \cos 60=1 / 2$ used
	(iii)	$\begin{array}{ll} & \text { OB horizontal when } h=0 \\ \Rightarrow \quad & \left(a+\frac{1}{2} b\right) \sin \theta-\frac{\sqrt{3}}{2} b \cos \theta=0 \\ \Rightarrow \quad & \left(a+\frac{1}{2} b\right) \sin \theta=\frac{\sqrt{3}}{2} b \cos \theta \\ \Rightarrow \quad & \frac{\sin \theta}{\cos \theta}=\frac{\frac{\sqrt{3}}{2} b}{a+\frac{1}{2} b} \\ \Rightarrow \quad & \tan \theta=\frac{\sqrt{3} b}{2 a+b} * \end{array}$	M1 M1 E1 [3]	$\frac{\sin \theta}{\cos \theta}=\tan \theta$
	(iv)	$\begin{array}{ll} & 2 \sin \theta-\sqrt{3} \cos \theta=R \sin (\theta-\alpha) \\ & =R(\sin \theta \cos \alpha-\cos \theta \sin \alpha) \\ \Rightarrow \quad & R \cos \alpha=2, R \sin \alpha=\sqrt{3} \\ \Rightarrow \quad & R^{2}=2^{2}+(\sqrt{ } 3)^{2}=7, R=\sqrt{ } 7=2.646 \mathrm{~m} \\ & \tan \alpha=\sqrt{ } 3 / 2, \alpha=40.9^{\circ} \\ & \quad \text { So } h=\sqrt{ } 7 \sin \left(\theta-40.9^{\circ}\right) \\ \Rightarrow \quad & h_{\max }=\sqrt{ } 7=2.646 \mathrm{~m} \\ & \quad \text { when } \theta-40.9^{\circ}=90^{\circ} \\ \Rightarrow \quad & \theta=130.9^{\circ} \end{array}$	M1 B1 M1A1 B1ft M1 A1 [7]	

7	(i)	$\begin{aligned} & \begin{array}{l} \frac{\mathrm{d} x}{\mathrm{~d} t}=-1\left(1+\mathrm{e}^{-t}\right)^{-2} \cdot-\mathrm{e}^{-t} \\ =\frac{\mathrm{e}^{-t}}{\left(1+\mathrm{e}^{-t}\right)^{2}} \\ 1-x=1-\frac{1}{1+\mathrm{e}^{-t}} \\ 1-x=\frac{1+\mathrm{e}^{-t}-1}{1+\mathrm{e}^{-t}}=\frac{\mathrm{e}^{-t}}{1+\mathrm{e}^{-t}} \\ \Rightarrow \quad x(1-x)=\frac{1}{1+\mathrm{e}^{-t}} \frac{\mathrm{e}^{-t}}{1+\mathrm{e}^{-t}}=\frac{\mathrm{e}^{-t}}{\left(1+\mathrm{e}^{-t}\right)^{2}} \\ \Rightarrow \quad \frac{d x}{d t}=x(1-x) \end{array} \\ & \text { When } t=0, x=\frac{1}{1+\mathrm{e}^{0}}=0.5 \end{aligned}$	M1 A1 M1 A1 E1 B1 [6]	chain rule substituting for $x(1-x)$ $1-x=\frac{1+\mathrm{e}^{-t}-1}{1+\mathrm{e}^{-t}}=\frac{\mathrm{e}^{-t}}{1+\mathrm{e}^{-t}}$ [OR,M1 A1 for solving differential equation for t, B1 use of initial condition, M1 A1 making x the subject, E1 required form]
	(ii)	$\begin{array}{ll} & \frac{1}{\left(1+\mathrm{e}^{-t}\right)}=\frac{3}{4} \\ \Rightarrow \quad & \mathrm{e}^{-t}=1 / 3 \\ \Rightarrow \quad & t=-\ln 1 / 3=1.10 \text { years } \end{array}$	M1 M1 A1 [3]	correct log rules
	(iii)	$\begin{aligned} & \quad \frac{1}{x^{2}(1-x)}=\frac{A}{x^{2}}+\frac{B}{x}+\frac{C}{1-x} \\ & \Rightarrow \quad 1=A(1-x)+B x(1-x)+C x^{2} \\ & x=0 \Rightarrow A=1 \\ & x=1 \Rightarrow C=1 \end{aligned}$ $\text { coefft of } x^{2}: 0=-B+C \Rightarrow B=1$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { B(2,1,0) } \\ & {[4]} \end{aligned}$	clearing fractions substituting or equating coeffs for A, B or C $A=1, B=1, C=1 \mathrm{www}$
	(iv)	$\begin{aligned} & \int \frac{\mathrm{d} x}{x^{2}(1-x)} \mathrm{d} x=\int \mathrm{d} t \\ \Rightarrow \quad t & =\int\left(\frac{1}{x^{2}}+\frac{1}{x}+\frac{1}{1-x}\right) \mathrm{d} x \\ & =-1 / x+\ln x-\ln (1-x)+c \\ & \text { When } t=0, x=1 / 2 \Rightarrow 0=-2+\ln 1 / 2-\ln 1 / 2+c \\ \Rightarrow \quad c & =2 . \\ \Rightarrow \quad t & =-1 / x+\ln x-\ln (1-x)+2 \\ & =2+\ln \frac{x}{1-x}-\frac{1}{x} * \end{aligned}$	M1 B1 B1 M1 E1 [5]	separating variables $-1 / x+\ldots$ $\ln x-\ln (1-x)$ ft their A,B,C substituting initial conditions
	(v)	$t=2+\ln \frac{3 / 4}{1-3 / 4}-\frac{1}{3 / 4}=\ln 3+\frac{2}{3}=1.77 \mathrm{yrs}$	M1A1 [2]	

$\mathbf{1}$	15	B1	
$\mathbf{2}$	THE MATHEMATICIAN	B1	
$\mathbf{3}$	M H X I Q 3 or 4 correct - award 1 mark	B2	
$\mathbf{4}$	Two from Ciphertext N has high frequency E would then correspond to ciphertext R which also has high frequency T would then correspond to ciphertext G which also has high frequency A is preceded by a string of six letters displaying low frequency	B1	B1
$\mathbf{5}$	The length of the keyword is a factor of both 84 and 40. The only common factors of 84 and 40 are 1,2 and 4 (and a keyword of length 1 can be dismissed in this context)	oe	
$\mathbf{6}$	Longer strings to analyse so letter frequency more transparent. Or there are fewer 2-letter keywords to check	M1	E1

Mathematics (MEI)

Advanced GCE 4754A

Applications of Advanced Mathematics (C4) Paper A

Mark Scheme for June 2010

Section A

1 $\begin{aligned} & \frac{x}{x^{2}-1}+\frac{2}{x+1}=\frac{x}{(x-1)(x+1)}+\frac{2}{x+1} \\ & =\frac{x+2(x-1)}{(x-1)(x+1)} \\ & =\frac{(3 x-2)}{(x-1)(x+1)} \end{aligned}$ or $\begin{aligned} & \frac{x}{x^{2}-1}+\frac{2}{x+1}=\frac{x(x+1)+2\left(x^{2}-1\right)}{\left(x^{2}-1\right)(x+1)} \\ &=\frac{3 x^{2}+x-2}{\left(x^{2}-1\right)(x+1)} \\ &=\frac{(3 x-2)(x+1)}{\left(x^{2}-1\right)(x+1)} \\ &=\frac{(3 x-2)}{\left(x^{2}-1\right)} \end{aligned}$	B1 M1 A1 M1 B1 A1 [3]	$x^{2}-1=(x+1)(x-1)$ correct method for addition of fractions or $\frac{(3 x-2)}{x^{2}-1}$ do not isw for incorrect subsequent cancelling correct method for addition of fractions $(3 x-2)(x+1)$ accept denominator as $x^{2}-1$ or $(x-1)(x+1)$ do not isw for incorrect subsequent cancelling
$\begin{gathered} \text { 2(i) } \quad \text { When } x=0.5, y=1.1180 \\ \Rightarrow \quad A \approx 0.25 / 2\{1+1.4142+2(1.0308+1.1180+1.25)\} \\ =0.25 \times 4.6059=1.151475 \\ =1.151(3 \text { d.p. })^{*} \end{gathered}$	B1 M1 E1 [3]	4dp (0.125 x 9.2118) need evidence
(ii) Explain that the area is an over-estimate. or The curve is below the trapezia, so the area is an over- estimate. This becomes less with more strips. or Greater number of strips improves accuracy so becomes less	B1 B1 [2]	or use a diagram to show why
$\text { (iii) } \begin{aligned} V & =\int_{0}^{1} \pi y^{2} d x \\ & =\int_{0}^{1} \pi\left(1+x^{2}\right) d x \\ & =\pi\left[\left(x+x^{3} / 3\right)\right]_{0}^{1} \\ & =1 \frac{1}{3} \pi \end{aligned}$	M1 B1 A1 [3]	allow limits later $x+x^{3} / 3$ exact

$\begin{array}{ll} 4 & \sqrt{4+x}=2\left(1+\frac{x}{4}\right)^{\frac{1}{2}} \\ & =2\left(1+\frac{1}{2} \cdot \frac{x}{4}+\frac{\frac{1}{2}}{2} \cdot-\frac{1}{2}\right. \\ & \left.=2\left(\frac{x}{4}\right)^{2}+\ldots\right) \\ & =2+\frac{1}{8} x-\frac{1}{128} x-\frac{1}{64} x^{2}+\ldots \\ \Rightarrow & \text { Valid for }-1<x / 4<1 \\ \Rightarrow & -4<x<4 \end{array}$	M1 M1 A1 A1 B1 [5]	dealing with $\sqrt{ } 4$ (or terms in $4^{\frac{1}{2}}, 4^{\frac{-1}{2}}, \ldots$ etc) correct binomial coefficients correct unsimplified expression for $(1+\mathrm{x} / 4)^{\frac{1}{2}} \text { or }(4+\mathrm{x})^{\frac{1}{2}}$ cao
$\text { 5(i) } \begin{array}{rl} \frac{3}{(y-2)(y+1)} & =\frac{A}{y-2}+\frac{B}{y+1} \\ & =\frac{A(y+1)+B(y-2)}{(y-2)(y+1)} \\ \Rightarrow \quad 3=A(y+1)+B(y-2) \\ y & y \Rightarrow 3=3 A \Rightarrow A=1 \\ y & =-1 \Rightarrow 3=-3 B \Rightarrow B=-1 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	substituting, equating coeffs or cover up
$\begin{array}{ll} \text { (ii) } & \frac{d y}{d x}=x^{2}(y-2)(y+1) \\ \Rightarrow & \int \frac{3 \mathrm{~d} y}{(y-2)(y+1)}=\int 3 x^{2} \mathrm{~d} x \\ \Rightarrow & \int\left(\frac{1}{(y-2)}-\frac{1}{y+1}\right) \mathrm{d} y=\int 3 x^{2} \mathrm{~d} x \\ \Rightarrow & \ln (y-2)-\ln (y+1)=x^{3}+c \\ \Rightarrow & \ln \left(\frac{y-2}{y+1}\right)=x^{3}+c \\ \Rightarrow & \frac{y-2}{y+1}=\mathrm{e}^{x^{3}+c}=\mathrm{e}^{x^{3}} \cdot \mathrm{e}^{c}=A \mathrm{e}^{3^{3} *} \end{array}$	M1 B1ft B1 M1 E1 [5]	separating variables $\ln (y-2)-\ln (y+1)$ ft their A, B $x^{3}+c$ anti-logging including c www
$\begin{gathered} 6 \quad \tan (\theta+45)=\frac{\tan \theta+\tan 45}{1-\tan \theta \tan 45} \\ =\frac{\tan \theta+1}{1-\tan \theta} \\ \Rightarrow \quad \\ \Rightarrow \quad \frac{\tan \theta+1}{1-\tan \theta}=1-2 \tan \theta \\ \Rightarrow \quad 1+\tan \theta=(1-2 \tan \theta)(1-\tan \theta) \\ \Rightarrow \quad 0=2 \tan ^{2} \theta-4 \tan \theta=2 \tan \theta(\tan \theta \\ \Rightarrow \quad \tan \theta-2) \\ \Rightarrow \quad \theta=0 \text { or } 63.43 \end{gathered}$	M1 A1 M1 A1 M1 A1A1 [7]	oe using sin/cos multiplying up and expanding any correct one line equation solving quadratic for $\tan \theta$ oe www -1 extra solutions in the range

Section B

$\text { 7(i) } \begin{aligned} \quad \overline{\mathrm{AB}} & =\left(\begin{array}{l} 100-(-200) \\ 200-100 \\ 100-0 \end{array}\right)=\left(\begin{array}{l} 300 \\ 100 \\ 100 \end{array}\right) * \\ \mathrm{AB} & =\sqrt{ }\left(300^{2}+100^{2}+100^{2}\right)=332 \mathrm{~m} \end{aligned}$	E1 M1 A1 [3]	accept surds
$\begin{array}{ll} \text { (ii) } & \mathbf{r}=\left(\begin{array}{l} -200 \\ 100 \\ 0 \end{array}\right)+\lambda\left(\begin{array}{l} 300 \\ 100 \\ 100 \end{array}\right) \\ & \text { Angle is between }\left(\begin{array}{l} 3 \\ 1 \\ 1 \end{array}\right) \text { and }\left(\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right) \\ \Rightarrow & \cos \theta=\frac{3 \times 0+1 \times+1 \times 1}{\sqrt{11} \sqrt{1}}=\frac{1}{\sqrt{11}} \\ \Rightarrow & \theta=72.45^{\circ} \end{array}$	B1B1 M1 M1 A1 A1 [6]	oe $\ldots \text { and }\left(\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right)$ complete scalar product method(including cosine) for correct vectors 72.5° or better, accept 1.26 radians
(iii) Meets plane of layer when $\begin{aligned} & \begin{array}{l} (-200+300 \lambda)+2(100+100 \lambda)+3 \times 100 \lambda=320 \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow=200 \lambda=320 \end{array} \\ & \quad \mathbf{r}=\left(\begin{array}{l} -200 \\ 100 \\ 0 \end{array}\right)+\frac{2}{5}\left(\begin{array}{l} 300 \\ 100 \\ 100 \end{array}\right)=\left(\begin{array}{l} -80 \\ 140 \\ 40 \end{array}\right) \end{aligned}$ so meets layer at $(-80,140,40)$	M1 A1 M1 A1 [4]	
(iv) Normal to plane is $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ Angle is between $\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ $\Rightarrow \quad \cos \theta=\frac{3 \times 1+1 \times 2+1 \times 3}{\sqrt{11} \sqrt{14}}=\frac{8}{\sqrt{11} \sqrt{14}}=0.6446 .$. $\Rightarrow \quad \theta=49.86^{\circ}$ $\Rightarrow \quad$ angle with layer $=40.1^{\circ}$	B1 M1A1 A1 A1 [5]	complete method ft 90-their θ accept radians

$\begin{array}{ll} \text { 8(i) } & \text { At A, } y=0 \Rightarrow 4 \cos \theta=0, \theta=\pi / 2 \\ & \text { At } \mathrm{B}, \cos \theta=-1, \Rightarrow \theta=\pi \\ & x \text {-coord of } \mathrm{A}=2 \times \pi / 2-\sin \pi / 2=\pi-1 \\ & x \text {-coord of } \mathrm{B}=2 \times \pi-\sin \pi=2 \pi \\ \Rightarrow & \mathrm{OA}=\pi-1, \mathrm{AC}=2 \pi-\pi+1=\pi+1 \\ \Rightarrow & \text { ratio is }(\pi-1):(\pi+1)^{*} \end{array}$	B1 B1 M1 A1 E1 [5]	for either A or B / C for both A and B / C
$\begin{aligned} & \text { (ii) } \begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} \theta} & =-4 \sin \theta \\ \frac{\mathrm{~d} x}{\mathrm{~d} \theta} & =2-\cos \theta \\ \Rightarrow \quad \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y / \mathrm{d} \theta}{\mathrm{~d} x / \mathrm{d} \theta} \\ & =-\frac{4 \sin \theta}{2-\cos \theta} \\ \text { At A, gradient } & =-\frac{4 \sin (\pi / 2)}{2-\cos (\pi / 2)}=-2 \end{aligned},=\text {, } \end{aligned}$	B1 M1 A1 A1 [4]	either $\mathrm{d} x / \mathrm{d} \theta$ or $\mathrm{d} y / \mathrm{d} \theta$ www
$\begin{aligned} & \text { (iii) } \frac{\mathrm{d} y}{\mathrm{~d} x}=1 \Rightarrow-\frac{4 \sin \theta}{2-\cos \theta}=1 \\ & \Rightarrow \quad-4 \sin \theta=2-\cos \theta \\ & \Rightarrow \quad \cos \theta-4 \sin \theta=2^{*} \end{aligned}$	M1 E1 [2]	their $\mathrm{d} y / \mathrm{d} x=1$
$\begin{array}{ll} \text { (iv) } & \cos \theta-4 \sin \theta=R \cos (\theta+\alpha) \\ & =R(\cos \theta \cos \alpha-\sin \theta \sin \alpha) \\ \Rightarrow & R \cos \alpha=1, R \sin \alpha=4 \\ \Rightarrow & R^{2}=1^{2}+4^{2}=17, R=\sqrt{ } 17 \\ & \tan \alpha=4, \alpha=1.326 \\ \Rightarrow & \sqrt{ } 17 \cos (\theta+1.326)=2 \\ \Rightarrow & \cos (\theta+1.326)=2 / \sqrt{ } 17 \\ \Rightarrow & \theta+1.326=1.064,5.219,7.348 \\ \Rightarrow & \theta=(-0.262), 3.89,6.02 \end{array}$	M1 B1 M1 A1 M1 A1 A1 [7]	corr pairs accept $76.0^{\circ}, 1.33$ radians inv $\cos (2 / \sqrt{ } 17)$ ft their R for method -1 extra solutions in the range

Mathematics (MEI)

Advanced GCE 4754B

Mark Scheme for June 2010

1.		Rail: $\quad 307 \times 0.0602=18.4814=18.5 \mathrm{~kg}(3 \mathrm{sf})$ Road: $\quad 300 \times 0.2095 \div 1.58=39.77 \ldots=39.8 \mathrm{~kg}(3 \mathrm{sf})$ Reduction $=21.3 \mathrm{~kg}$	B1 for either B1
2.		$\begin{gathered} \quad y=\frac{1}{10^{4}}\left(x^{3}-100 x^{2}-10000 x+2100100\right) . . \\ \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{10^{4}}\left(3 x^{2}-200 x-10000\right) \\ \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow 3 x^{2}-200 x-10000=0 \\ (3 x+100)(x-100)=0 \\ x=100\left(\text { or } x=-\frac{100}{3}\right) \end{gathered}$ The graph shows the minimum emission occurs at speed of $100 \mathrm{~km}^{\text {hour }}{ }^{-1}$ Substituting $x=100$ gives $y=110.01$ Minimum rate of emission is 110 grams per km.	M1 A1 M1 solving quadratic A1 A1 or $\frac{d^{2} y}{d x^{2}}$ justify min A1
3.	(i)	$\begin{aligned} & \text { Substituting } p=250, d=279, s=4 \text { in } E=(10+0.0015 p) d+200 \mathrm{~s} \\ & \Rightarrow E=3694.625 \text { (in kg) } \\ & \text { So emissions are } 3.7 \text { tonnes to } 2 \text { s.f. * } \end{aligned}$	M1 subst E1
	(ii)	$\begin{aligned} & \text { Emission rate }=1.5 \mathrm{~g} \mathrm{~km}^{-1} \\ & \text { Distance }=279 \mathrm{~km} \\ & \begin{aligned} \text { Emissions } & =1.5 \times 279=418.5 \mathrm{~g} \\ & =0.42 \mathrm{~kg}(2 \mathrm{~s} . \mathrm{f}) \text {, and so is less than } 1 / 2 \mathrm{~kg} . \end{aligned} \end{aligned}$ or $\mathrm{p}=251$ in formula gives $\mathrm{E}=3695.0435$, difference $=0.4185 \mathrm{~kg}<0.5 \mathrm{~kg}$	E1
4.	(i)		$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$
	(ii)	There is a basic service of 10 trains a day for up to 1 million passengers per year. For every half million extra passengers above 1 million, an extra daily train is provided.	B1

| 5. | 100 miles $=1.609344 \times 100 \mathrm{~km}$
 $=160 \mathrm{~km} 934 \mathrm{~m} 40 \mathrm{~cm}$
 So it appears to give the answer to the nearest 10 cm (option B). | M1
 A1
 A1 |
| :--- | :--- | :--- | :--- |
| [18] | | |

Section A

$\begin{aligned} & \text { 4(i) } \overrightarrow{\mathrm{AB}}=\left(\begin{array}{l} 2 \\ 3 \\ -5 \end{array}\right), \overrightarrow{\mathrm{BC}}=\left(\begin{array}{l} 5 \\ 0 \\ 2 \end{array}\right) \\ & \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{BC}}=\left(\begin{array}{l} 2 \\ 3 \\ -5 \end{array}\right) \cdot\left(\begin{array}{l} 5 \\ 0 \\ 2 \end{array}\right)=2 \times 5+3 \times 0+(-5) \times 2=0 \end{aligned}$ $\Rightarrow \quad A B$ is perpendicular to $B C$.	B1 B1 M1E1 [4]	
$\text { (ii) } \quad \begin{aligned} & \mathrm{AB}=\sqrt{ }\left(2^{2}+3^{2}+(-5)^{2}\right)=\sqrt{ } 38 \\ & \\ & \mathrm{BC}=\sqrt{ }\left(5^{2}+0^{2}+2^{2}\right)=\sqrt{ } 29 \\ & \\ & \text { Area }=1 / 2 \times \sqrt{ } 38 \times \sqrt{ } 29=1 / 2 \sqrt{ } 1102 \text { or } 16.6 \text { units }^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	complete method ft lengths of both AB, BC oe www
$5 \begin{aligned} \text { LHS } & =\frac{2 \sin \theta \cos \theta}{1+2 \cos ^{2} \theta-1} \\ & =\frac{2 \sin \theta \cos \theta}{2 \cos ^{2} \theta} \\ & =\frac{\sin \theta}{\cos \theta}=\tan \theta=\text { RHS } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { E1 } \\ & \text { [3] } \end{aligned}$	one correct double angle formula used cancelling $\cos \theta$'s
6(i) $\quad\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}-8-3 \lambda \\ -2 \\ 6+\lambda\end{array}\right)$ Substituting into plane equation: $\begin{aligned} & 2(-8-3 \lambda)-3(-2)+6+\lambda=11 \\ \Rightarrow & -16-6 \lambda+6+6+\lambda=11 \\ \Rightarrow \quad & 5 \lambda=-15, \lambda=-3 \end{aligned}$ So point of intersection is $(1,-2,3)$	B1 M1 A1 A1ft [4]	
$\begin{aligned} & \text { (ii) Angle between }\left(\begin{array}{l} 2 \\ -3 \\ 1 \end{array}\right) \text { and }\left(\begin{array}{l} -3 \\ 0 \\ 1 \end{array}\right) \\ & \cos \theta=\frac{2 \times(-3)+(-3) \times 0+1 \times 1}{\sqrt{14} \sqrt{10}} \\ & \Rightarrow \quad \text { acute angle }=65^{\circ} \end{aligned}$	B1 M1 A1 A1 [4]	allow M1 for a complete method only for any vectors

Section B

7(i) When $t=0, v=5\left(1-\mathrm{e}^{0}\right)=0$ As $t \rightarrow \infty, \mathrm{e}^{-2 t} \rightarrow 0, \Rightarrow v \rightarrow 5$ When $t=0.5, v=3.16 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \\ & \text { B1 } \end{aligned}$ [3]	
$\begin{aligned} & \text { (ii) } \frac{\mathrm{d} v}{\mathrm{~d} t}=5 \times(-2) \mathrm{e}^{-2 t}=10 \mathrm{e}^{-2 t} \\ & \quad 10-2 v=10-10\left(1-\mathrm{e}^{-2 t}\right)=10 \mathrm{e}^{-2 t} \\ & \Rightarrow \quad \frac{\mathrm{~d} v}{\mathrm{~d} t}=10-2 v \end{aligned}$	B1 M1 E1 [3]	
$\begin{array}{ll} \text { (iii) } \frac{\mathrm{d} v}{\mathrm{~d} t}=10-0.4 v^{2} \\ \Rightarrow \quad & \frac{10}{100-4 v^{2}} \frac{\mathrm{~d} v}{\mathrm{~d} t}=1 \\ \Rightarrow \quad & \frac{10}{25-v^{2}} \frac{\mathrm{~d} v}{\mathrm{~d} t}=4 \\ \Rightarrow \quad & \frac{10}{(5-v)(5+v)} \frac{\mathrm{d} v}{\mathrm{~d} t}=4^{*} \\ & \frac{10}{(5-v)(5+v)}=\frac{A}{5-v}+\frac{B}{5+v} \\ \Rightarrow \quad 10=A(5+v)+B(5-v) \\ v=5 \Rightarrow 10=10 A \Rightarrow A=1 \\ v=-5 \Rightarrow 10=10 B \Rightarrow B=1 \\ \Rightarrow \quad & \frac{10}{(5-v)(5+v)}=\frac{1}{5-v}+\frac{1}{5+v} \\ \Rightarrow \quad & \quad \int\left(\frac{1}{5-v}+\frac{1}{5+v}\right) \mathrm{d} v=4 \int \mathrm{~d} t \\ \Rightarrow \quad \ln (5+v)-\ln (5-v)=4 t+c \\ \text { when } t=0, v=0, \Rightarrow 0=4 \times 0+c \Rightarrow c=0 \\ \Rightarrow \quad \ln \left(\frac{5+v}{5-v}\right)=4 t \\ \Rightarrow \quad t=\frac{1}{4} \ln \left(\frac{5+v}{5-v}\right) * \end{array}$	M1 E1 M1 A1 M1 A1 A1 E1 [8]	for both $A=1, B=1$ separating variables correctly and indicating integration ft their A, B, condone absence of c ft finding c from an expression of correct form
(iv) When $t \rightarrow \infty, \mathrm{e}^{-4 t} \rightarrow 0, \Rightarrow v \rightarrow 5 / 1=5$ when $t=0.5, t=\frac{5\left(1-\mathrm{e}^{-2}\right)}{1+\mathrm{e}^{-2}}=3.8 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & \text { E1 } \\ & \text { M1A1 } \\ & \text { [3] } \end{aligned}$	
(v) The first model	$\begin{aligned} & \text { E1 } \\ & {[1]} \end{aligned}$	www

8(i) $\mathrm{AC}=5 \sec \alpha$	B1	
$\begin{aligned} \Rightarrow & \mathrm{CF}=\mathrm{AC} \tan \beta \\ & =5 \sec \alpha \tan \beta \\ \Rightarrow & \mathrm{GF}=2 \mathrm{CF}=10 \sec \alpha \tan \beta^{*} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & \text { [3] } \end{aligned}$	${ }^{A C t a n} \beta$
(ii) $\begin{aligned} \mathrm{CE} & =\mathrm{BE}-\mathrm{BC} \\ & =5 \tan (\alpha+\beta)-5 \tan \alpha \\ & =5(\tan (\alpha+\beta)-\tan \alpha) \\ & =5\left(\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}-\tan \alpha\right) \\ & =5\left(\frac{\tan \alpha+\tan \beta-\tan \alpha+\tan ^{2} \alpha \tan \beta}{1-\tan \alpha \tan \beta}\right) \\ = & \frac{5\left(1+\tan ^{2} \alpha\right) \tan \beta}{1-\tan \alpha \tan \beta} \\ = & \frac{5 \tan \beta \sec ^{2} \alpha}{1-\tan \alpha \tan \beta} * \end{aligned}$	$\begin{aligned} & \text { E1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { DM1 } \\ & \\ & \text { E1 } \\ & {[5]} \end{aligned}$	compound angle formula combining fractions $\sec ^{2}=1+\tan ^{2}$
$\begin{aligned} & \text { (iii) } \sec ^{2} 45^{\circ}=2, \tan 45^{\circ}=1 \\ & \Rightarrow \quad \mathrm{CE} \end{aligned}=\frac{5 t \times 2}{1-t}=\frac{10 t}{1-t} .$	B1 M1 A1 M1 E1 [5]	used substitution for both in CE or CD oe for both adding their CE and CD
$\begin{aligned} & \text { (iv) } \quad \cos 45^{\circ}=1 / \sqrt{ } 2 \Rightarrow \sec \alpha=\sqrt{2} \\ & \Rightarrow \quad \mathrm{GF}=10 \sqrt{2} \tan \beta=10 \sqrt{ } 2 t \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & {[2]} \end{aligned}$	
$\begin{array}{ll} \text { (v) } & \text { DE }=2 \mathrm{GF} \\ \Rightarrow & 20 t \\ 1-t^{2} & =20 \sqrt{2} t \\ \Rightarrow & 1-t^{2}=1 / \sqrt{ } 2 \Rightarrow t^{2}=1-1 / \sqrt{ } 2 * \\ \Rightarrow & t=0.541 \\ \Rightarrow & \beta=28.4^{\circ} \end{array}$	$\begin{aligned} & \text { E1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	invtan t

Qn	Answer				Marks
1(i)	6 correct marks				B1
1(ii)	Either state both m and n odd or give a diagram (doorways between rooms not necessary) justification				$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1ft } \end{array}$
2(i)	$\frac{9-1}{4}=2=\left\lfloor\frac{4+1}{2}\right\rfloor$				B2 (B1 for LHS correct)
2(ii)	x 1 $\left\lceil\frac{x}{2}\right\rceil$ 1	2 l	4	5	B2,1,0
		12	2	3	
3.	If each of A, B and C appeared at least four times then the total number of vertices would have to be at least $3 \times 4=12$				E2
4(i)					
					M1 allow if one error A1
4(ii)					A1
5(i)	True. Two cameras at the vertices labelled A or at the vertices labelled B would cover the entire gallery				A1 M1 for either
5(ii)	False. One camera at either vertex labelled A would be sufficient (or C on RHS)				$\begin{aligned} & \text { A1 } \\ & \text { M1 } \\ & \hline \end{aligned}$
6	Anywhere in shaded region correct				M1 A1

$\begin{aligned} & \mathbf{1} \quad \frac{1}{(2 x+1)\left(x^{2}+1\right)}=\frac{A}{2 x+1}+\frac{B x+C}{x^{2}+1} \\ & \Rightarrow \quad 1=A\left(x^{2}+1\right)+(B x+C)(2 x+1) \\ & x=-1 / 2: 1=11 / 4 A \Rightarrow A=4 / 5 \\ & \text { coeff of } x^{2}: \quad 0=A+2 B \Rightarrow B=-2 / 5 \\ & \text { constants: } \quad 1=A+C \Rightarrow C=1 / 5 \end{aligned}$	M1 M1 B1 B1 B1 [5]	correct form of partial fractions mult up and equating or substituting oe soi www www www	for omission of B or C on numerator, M0, M1, then ($x=-1 / 2, A=4 / 5$) B1, B0, B0 is possible. for $\frac{A+D x}{2 x+1}+\frac{B x+C}{x^{2}+1}$, M1,M1 then B1 for both $A=4 / 5$ and $D=0, \mathrm{~B} 1, \mathrm{~B} 1$ is possible. isw for incorrect assembly of final partial fractions following correct $A, B \& C$. condone omission of brackets for second M1 only if the brackets are implied by subsequent working.
$\begin{aligned} & 2 \quad \begin{aligned} (1+3 x)^{\frac{1}{3}} & =1+\frac{1}{3}(3 x)+\frac{\frac{1}{3} \cdot\left(-\frac{2}{3}\right)}{2!}(3 x)^{2}+\ldots \\ & =1+x-x^{2}+\ldots \end{aligned} \\ & \Rightarrow \quad \text { Valid for }-1 \leq 3 x \leq 1 \\ & \Rightarrow \quad-1 / 3 \leq x \leq 1 / 3 \end{aligned}$	M1 A1 A1 M1 A1 [5]	correct binomial coefficients $\begin{aligned} & 1+x \ldots \\ & \ldots-x^{2} \end{aligned}$ or $\|3 x\| \leq 1 \quad$ oe or $\|x\| \leq 1 / 3$ (correct final answer scores M1A1)	ie $1,1 / 3,(1 / 3)(-2 / 3) / 2$ not $n C r$ form simplified www in this part simplified www in this part, ignore subsequent terms using ($3 x)^{2}$ as $3 x^{2}$ can score M1B1B0 condone omission of brackets if $3 x^{2}$ is used as $9 x^{2}$ do not allow MR for power 3 or $-1 / 3$ or similar condone inequality signs throughout or say < at one end and \leq at the other condone $-1 / 3 \leq\|x\| \leq 1 / 3, \quad x \leq 1 / 3$ is M0A0 the last two marks are not dependent on the first three
3 $\begin{aligned} & 2 \sin \theta-3 \cos \theta=R \sin (\theta-\alpha) \\ & \quad=R \sin \theta \cos \alpha-R \cos \theta \sin \alpha \\ & \Rightarrow R \cos \alpha=2, R \sin \alpha=3 \\ & \Rightarrow R^{2}=2^{2}+3^{2}=13, R=\sqrt{ } 13 \\ & \tan \alpha=3 / 2 \\ & \Rightarrow \quad \alpha=0.983 \end{aligned}$ minimum $1-\sqrt{ } 13$, maximum $1+\sqrt{ } 13$	M1 B1 M1 A1 B1 B1 [6]	correct pairs $R=\sqrt{ } 13$ or 3.61 or better 0.98 or better or $-2.61,4.61$ or better	condone wrong sign at this stage correct division, ft from first M1 radians only accept multiples of π that round to 0.98 allow B1, B1ft for $1-\sqrt{ } \mathrm{R}$ and $1+\sqrt{ } \mathrm{R}$ for their R to 2 dp or better

$$
\begin{aligned}
& \text { 4(i) } \quad x=2 \sin \theta, y=\cos 2 \theta \\
& \text { When } \theta=\pi / 3, x=2 \sin \pi / 3=\sqrt{ } 3 \\
& y=\cos 2 \pi / 3=-1 / 2
\end{aligned}
$$

EITHER

$\mathrm{d} x / \mathrm{d} \theta=2 \cos \theta, \mathrm{~d} y / \mathrm{d} \theta=-2 \sin 2 \theta$
$\Rightarrow \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-\sin 2 \theta}{\cos \theta}$
$=\frac{-\sin 2 \pi / 3}{\cos \pi / 3}=\frac{-\sqrt{3} / 2}{1 / 2}=-\sqrt{3}$

OR expressing y in terms of $x, y=1-x^{2} / 2$
$\frac{d y}{d x}=-x$ or $-2 \sin \theta$
$d x$
$=-\sqrt{ } 3$
(ii) $y=1-2 \sin ^{2} \theta=1-2(x / 2)^{2}=1-1 / 2 x^{2}$

Mark Scheme

B1	$x=\sqrt{ } 3$	exact only (isw all dec answers following exact ans)
B1	$y=-1 / 2$	
M1	$\mathrm{d} y / \mathrm{d} x=(\mathrm{d} y / \mathrm{d} \theta) /(\mathrm{d} x / \mathrm{d} \theta)$ used	ft their derivatives if right way up (condone one further minor slip if intention clear) condone poor notation
A1	any correct equivalent form	can isw if incorrect simplification
A1	exact www	
$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		
A1	exact www	
[5]		
M1A1 [2]	or reference to (i) if used there	for M1, need correct trig identity and attempt to substitute for x allow SC B1 for $y=\cos 2 \arcsin (x / 2)$ or equivalent

Section B

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& 7(\mathbf{i}) \quad \begin{aligned}
\& \overrightarrow{\mathrm{AB}}=\left(\begin{array}{l}
-4 \\
0 \\
-2
\end{array}\right), \overrightarrow{\mathrm{AC}}=\left(\begin{array}{l}
-2 \\
4 \\
1
\end{array}\right) \\
\& \cos \mathrm{BAC}=\frac{\left(\begin{array}{l}
-4 \\
0 \\
-2
\end{array}\right) \cdot\left(\begin{array}{l}
-2 \\
4 \\
1
\end{array}\right)}{\mathrm{AB} \cdot \mathrm{AC}}=\frac{(-4) \cdot(-2)+0.4+(-2) \cdot 1}{\sqrt{20} \sqrt{21}} \\
\&=0.293 \\
\& \Rightarrow \quad \mathrm{BAC}=73.0^{\circ}
\end{aligned}
\end{aligned}
\] \& \begin{tabular}{l}
B1B1 \\
M1 \\
M1 \\
A1 \\
A1 \\
[6]
\end{tabular} \& \begin{tabular}{l}
dot product evaluated \\
\(\boldsymbol{\operatorname { c o s }} \mathrm{BAC}=\operatorname{dot}\) product \(/|\mathrm{AB}| .|\mathrm{AC}|\) \\
0.293 or cos \(\mathrm{ABC}=\) correct numerical expression as RHS above, or better \\
or rounds to \(73.0^{\circ}\) (accept \(73^{\circ} \mathrm{www}\))
\end{tabular} \& \begin{tabular}{l}
condone rows \\
substituted, ft their vectors \(A B, A C\) for method only need to see method for modulae as far as \(\sqrt{ }\)... use of vectors BA and CA could obtain B0 B0 M1 M1 A1 A1 \\
(or 1.27 radians)
\end{tabular} \\
\hline \[
\begin{array}{ll}
\text { (ii) } \& \text { A: } x+y-2 z+d=2-6+d=0 \\
\Rightarrow \& d=4 \\
\& \text { B: }-2+0-2 \times 1+4=0 \\
\& \text { C: } 0+4-2 \times 4+4=0 \\
\& \text { Normal } \mathbf{n}=\left(\begin{array}{l}
1 \\
1 \\
-2
\end{array}\right) \\
\& \text { n. }\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\frac{-2}{\sqrt{6}}=\cos \theta \\
\Rightarrow \& \theta=144.7^{\circ} \\
\Rightarrow \& \text { acute angle }=35.3^{\circ}
\end{array}
\] \& \begin{tabular}{l}
M1 DM1 A1 \\
B1 \\
M1 \\
A1 \\
A1 \\
[7]
\end{tabular} \& \begin{tabular}{l}
substituting one point evaluating for other two points \(d=4 \mathrm{www}\) \\
stated or used as normal anywhere in part (ii) \\
finding angle between normal vector and \(\mathbf{k}\) allow \(\pm 2 / \sqrt{6}\) or \(144.7^{\circ}\) for A1 \\
or rounds to \(35.3^{\circ}\)
\end{tabular} \& \begin{tabular}{l}
alternatively, finding the equation of the plane using any valid method (eg from vector equation, M1 A1 for using valid equation and eliminating both parameters, A1 for required form, or using vector cross product to get \(x+y-2 z=c\) oe M1 A1,finding \(c\) and required form, A 1 , or showing that two vectors in the plane are perpendicular to normal vector M1 A1 and finding d, A1) oe \\
(may have deliberately made +ve to find acute angle) \\
do not need to find \(144.7^{\circ}\) explicitly (or 0.615 radians)
\end{tabular} \\
\hline \[
\begin{array}{ll}
\text { (iii) } \& \text { At } \mathrm{D},-2+4-2 k+4=0 \\
\Rightarrow \& 2 k=6, k=3^{*} \\
\& \overrightarrow{\mathrm{CD}}=\left(\begin{array}{l}
-2 \\
0 \\
-1
\end{array}\right)=\frac{1}{2} \overrightarrow{\mathrm{AB}} \\
\Rightarrow \& \mathrm{CD} \text { is parallel to } \mathrm{AB} \\
\& \mathrm{CD}: \mathrm{AB}=1: 2
\end{array}
\] \& M1
A1
M1

A1

B1

[5] \& \begin{tabular}{l}
substituting into plane equation

AG
$$
\overrightarrow{\mathrm{CD}}=\left(\begin{array}{l}
-2 \\
0 \\
-1
\end{array}\right)
$$

mark final answer www allow $C D: A B=1 / 2, \sqrt{ } 5: \sqrt{ } 20$ oe, $A B$ is twice $C D$ oe

 \&

finding vector CD (or vector DC)

or DC parallel to AB or BA oe (or hence two parallel sides, if clear which) but A0 if their vector CD is vector DC

for B 1 allow vector CD used as vector DC
\end{tabular}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline $$
\begin{array}{|ll}
\hline \text { 8(i) } & \frac{\mathrm{d} V}{\mathrm{~d} t}=-k x \\
& V=1 / 3 x^{3} \Rightarrow \mathrm{~d} V / \mathrm{d} x=x^{2} \\
& \frac{\mathrm{~d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} x} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t}=x^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t} \\
\Rightarrow & x^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t}=-k x \\
\Rightarrow & x \frac{\mathrm{~d} x}{\mathrm{~d} t}=-k^{*}
\end{array}
$$ \& B1
M1

A1 \& \& | oe eg $\mathrm{d} x / \mathrm{d} t=\mathrm{d} x / \mathrm{d} V . \mathrm{d} V / \mathrm{d} t=1 / x^{2} .-k x=-k / x$ |
| :--- |
| AG | \&

\hline $$
\begin{aligned}
& \text { (ii) } \quad x \frac{\mathrm{~d} x}{\mathrm{~d} t}=-k \quad \Rightarrow \quad \int x \mathrm{~d} x=\int-k \mathrm{~d} t \\
& \Rightarrow \quad 1 / 2 x^{2}=-k t+c \\
& \text { When } t=0, x=10 \Rightarrow 50=c \\
& \Rightarrow \quad 1 / 2 x^{2}=50-k t \\
& \Rightarrow \quad x=\sqrt{ }(100-2 k t)^{*}
\end{aligned}
$$ \& M1

A1
B1

A1

[4] \& \& | separating variables and intention to integrate |
| :--- |
| condone absence of c |
| finding c correctly ft their integral of form $a x^{2}=b t+c$ |
| where a, b non zero constants |
| AG | \&

\hline $$
\begin{aligned}
& \text { (iii) When } t=50, x=0 \\
& \Rightarrow \quad 0=100-100 k \Rightarrow k=1
\end{aligned}
$$ \& M1

A1
[2] \& \& \&

\hline $$
\begin{array}{ll}
\text { (iv) } & \mathrm{d} V / \mathrm{d} t=1-k x=1-x \\
\Rightarrow & x^{2} \mathrm{~d} x / \mathrm{d} t=1-x \\
\Rightarrow & \frac{d x}{d t}=\frac{1-x}{x^{2}} *
\end{array}
$$ \& M1

A1
$[2]$ \& \& for $\mathrm{d} V / \mathrm{d} t=1-\mathrm{kx}$ or better AG \&

\hline $$
\begin{aligned}
& \text { (v) } \begin{aligned}
\frac{1}{1-x}-x-1 & =\frac{1-(1-x) x-(1-x)}{1-x} \\
& =\frac{1-x+x^{2}-1+x}{1-x}=\frac{x^{2}}{1-x}
\end{aligned} * \\
& \quad \int \frac{x^{2}}{1-x} \mathrm{~d} x=\int \mathrm{d} t \Rightarrow \int\left(\frac{1}{1-x}-x-1\right) d x=t+c \\
& \Rightarrow \quad-\ln (1-x)-1 / 2 x^{2}-x=t+c
\end{aligned} \text { When } t=0, x=0 \Rightarrow c=-\ln 1-0-0=0 .
$$ \& M1

A1

M1

A1
B1

A1 \& \& \begin{tabular}{l}
combining to single fraction

AG

separating variables \& subst for $x^{2} /(1-x)$ and intending

to integrate

condone absence of c

finding c for equation of correct form

$\operatorname{eg} c=0$, or $\pm \ln 1$ (allow $c=0$ without evaluation here)

cao AG

 \&

or long division or cross multiplying

check signs

need both sides of integral

accept $\ln (1 /(1-x))$ as $-\ln (1-x)$ www ie $a \ln (1-x)+b x^{2}+d x=e t+c a, b, d, e$ non zero constants do not allow if $\mathrm{c}=0$ without evaluation
\end{tabular}

\hline (vi) understanding that $\ln (1 / 0)$ or $1 / 0$ is undefined oe \& [1 \& \& www \& $\ln (1 / 0)=\ln 0,1 / 0=\propto$ and $\ln (1 / 0)=\propto$ are all B0

\hline
\end{tabular}

	estio	Answer	Marks	Guidance	
1		$\frac{16}{250}=6.4 \%$ * or $\frac{16}{250} \times 100=6.4 *$	B1 [1]	$\text { or } \frac{250-(64+170)}{250}=6.4 \%$	need evaluation
2	(i)	The smallest possible PIN that does not begin with zero is 1000 and the largest is 9999 , giving 9000 . However the 9 numbers 1111, 2222, ... 9999 are disallowed. The other disallowed numbers are 1234, 2345, ... 6789 (6 numbers) And 9876, 8765, .. 3210 (7 numbers). So, in all, there are $9000-(9+6+7)=8978$ possible PINs	M1 M1 A1 [3]	from a correct starting point (eg 10,000 or 9000), clear attempt to eliminate (or not include) numbers starting with 0 clear attempt to eliminate all three of these categories (with approx correct values in each category) if unclear, M0 M marks not dependent SC 8978 www B3	Alt1) for M1 (no 0 start), nos starting with 1,2,7,8,9 give 1000-2, nos starting with 3,4,5,6 give 1000-3 $=5(1000-2)+4(1000-$ 3)=8978 M1,A1 or2) eg starting with1, 1,not2,any,any+1,2,not3,any $+1,2,3$, not $4=900+90+9=999-$ (1111term) $=998$ can lead to $5(900+90+9-1)+4(900+90+9-$ 2) $=8978$ oe
2	(ii)	$\frac{6700000000}{8978}=746269$ The average is about 750000 .	M1 A1 [2]	ft from (i) ft	accept 2sf (or 1sf) only for A1
3			M1 A1 [2]	numbers total 11 all correct	

	uestion		Answ			Marks		idance
4		100000 transactions from 80 people over $31 / 2$ years with 365 days per year $\frac{100000}{(80 \times 3.5 \times 365)}(=0.978 \ldots)$ Approximately 1 transaction per person per day				M1 A1 [2]	cao	allow approximate number of days in a year eg 360 for M1 A1
5		Allow any one of the following for 1 mark An attack can happen without a breach of the card's security. The probabilities that a successful attack followed or did not follow a breach of card security are so close that a court would look for other evidence before reaching a decision. In many cases of unauthorised withdrawals the banks refund the money. The banks’ software does not detect all the attacks that occur.				B1 [1]	only accept versions of these statements	
6	(i)	Transactions Queried Not queried Total	Authorised 480 499460 499940	Un- authorised 20 40 60	Total 500 499500 500000	B1 B2 [3]	for top row 480, 20, 500 all five other entries correct	(500 000 is given) allow B1 for three or four correct from 499460,40,499500,499940,60

Question		Answer	Marks	Guidance
3	(i)	$\begin{aligned} & \mathrm{d} V / \mathrm{d} t=k \sqrt{ }= \\ & \\ & \quad \begin{aligned} & V=(1 / 2 k t+c)^{2} \\ & \mathrm{~d} V / \mathrm{d} t=2(1 / 2 k t+c) \cdot 1 / 2 k \\ & =k(1 / 2 k t+c) \\ & =k \downarrow V \end{aligned} \end{aligned}$	B1 M1 A1 A1 [4]	cao condone different k (allow MR B1 for $=k V^{2}$) $2(1 / 2 k t+c) \times$ constant multiple of k (or from multiplying out oe; or implicit differentiation) cao www any equivalent form (including unsimplified) Allow SCB2 if $V=(1 / 2 k t+c)^{2}$ fully obtained by integration including convincing change of constant if used Can score B1 M0 SCB2
	(ii)	$(1 / 2 k+c)^{2}=10000 \Rightarrow 1 / 2 k+c=100$ $\begin{aligned} & (k+c)^{2}=40000 \Rightarrow \quad \begin{array}{c} k+c=200 \\ \Rightarrow \\ \Rightarrow \\ \quad 1 / 2 k=100 \\ \quad k=200, c=0 \\ \Rightarrow V=(100 t)^{2}=10000 t^{2} \end{array} . \end{aligned}$	B1 B1 M1 A1 [4]	substituting any one from $t=1, V=10,000$ or $t=0, V=0$ or $t=2$, $V=40,000$ into squared form or rooted form of equation (Allow $-/ \pm 100$ or $-/ \pm 200$) substituting any other from above Solving correct equations for both www (possible solutions are (200,0), (-200,0), (600, -400), (-600,400) (some from -ve root)) either form www SC B2 for $V=(100 t)^{2}$ oe stated without justification SCB4 if justification eg showing substitution SC those working with $(\mathrm{k}+\mathrm{c})^{2}=30,000$ can score a maximum of B1B0 M1A0 (leads to $\mathrm{k} \approx 146$, c ≈ 26.8)

| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :--- |
| $\mathbf{5}$ | | | |

Question		Answer	Marks	Guidance
7	(i)	$\begin{aligned} & \theta=-\pi / 2: \mathrm{O}(0,0) \\ & \theta=0: \mathrm{P}(2,0) \\ & \theta=\pi / 2: \mathrm{O}(0,0) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$	Origin or O , condone omission of $(0,0)$ or O Or, say at $\mathrm{P} x=2, y=0$, need P stated Origin or O, condone omission of $(0,0)$ or O
7	(ii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} \theta}{\mathrm{~d} x / \mathrm{d} \theta} \\ & =\frac{2 \cos 2 \theta}{-2 \sin \theta}=-\frac{\cos 2 \theta}{\sin \theta} \end{aligned}$ When $\theta=\pi / 2 \mathrm{~d} y / \mathrm{d} x=-\cos \pi / \sin \pi / 2=1$ When $\theta=-\pi / 2 \mathrm{~d} y / \mathrm{d} x=-\cos (-\pi) / \sin (-\pi / 2)=-1$ Either $1 \times-1=-1$ so perpendicular Or gradient tangent $=1 \Rightarrow$ meets axis at 45°, similarly, gradient $=-1 \Rightarrow$ meets axis at 45° oe	M1 A1 M1 A1 A1 [5]	their $\mathrm{d} y / \mathrm{d} \theta / \mathrm{d} x / \mathrm{d} \theta$ any equivalent form www (not from $-2 \cos 2 \theta / 2 \sin \theta$) subst $\theta=\pi / 2$ in their equation Obtaining $\mathrm{d} y / \mathrm{d} x=1$, and $\mathrm{d} y / \mathrm{d} x=-1$ shown (or explaining using symmetry of curve) www justification that tangents are perpendicular www dependent on previous A1
7	(iii)	$\begin{aligned} & \text { At } \mathrm{Q}, \sin 2 \theta=1 \Rightarrow 2 \theta=\pi / 2, \theta=\pi / 4 \\ & \begin{array}{r} \Rightarrow \quad \text { coordinates of } \mathrm{Q} \text { are }(2 \cos \pi / 4, \sin \pi / 2) \\ \\ =(\sqrt{2}, 1) \end{array} \end{aligned}$	M1 A1 A1 [3]	or, using the derivative, $\cos 2 \theta=0$ soi or their $\mathrm{d} y / \mathrm{d} x=0$ to find θ. If the only error is in the sign or the coeff of the derivative in (ii), allow full marks in this part (condone $\theta=45^{\circ}$) www (exact only) accept $2 / \sqrt{ } 2$
7	(iv)	$\begin{gathered} \sin ^{2} \theta=\left(1-\cos ^{2} \theta\right)=1-1 / 4 x^{2} \\ \Rightarrow \quad y=\sin 2 \theta=2 \sin \theta \cos \theta \\ =(\pm) x \sqrt{ }\left(1-1 / 4 x^{2}\right) \\ \Rightarrow \quad y^{2}=x^{2}\left(1-1 / 4 x^{2}\right)^{*} \end{gathered}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \\ & \hline \end{aligned}$	oe, eg may be $x^{2}=\ldots$ Use of $\sin 2 \theta=2 \sin \theta \cos \theta$ subst for x or $y^{2}=4 \sin ^{2} \theta \cos ^{2} \theta$ (squaring) either order oe squaring or subst for x either order oe AG

	uest	Answer	Marks	Guidance
7	(v)	$\begin{aligned} & V=\int_{0}^{2} \pi x^{2}\left(1-\frac{1}{4} x^{2}\right) \mathrm{d} x \\ & =\int_{0}^{2}\left(\pi x^{2}-\frac{1}{4} \pi x^{4}\right) \mathrm{d} x \\ & =\pi\left[\frac{1}{3} x^{3}-\frac{1}{20} x^{5}\right]_{0}^{2} \\ & =\pi\left[\frac{8}{3}-\frac{32}{20}\right] \\ & =16 \pi / 15 \end{aligned}$	M1 B1 A1 A1 [4]	integral including correct limits but ft their '2' from (i) (limits may appear later) condone omission of $\mathrm{d} x$ if intention clear $\left[\frac{1}{3} x^{3}-\frac{1}{20} x^{5}\right]$ ie allow if no π and/or incorrect/no limits (or equivalent by parts) substituting limits into correct expression (including π) ft their ' 2 ' cao oe, 3.35 or better (any multiple of π must round to 3.35 or better)
8	(i)	$\overrightarrow{\mathrm{AA}^{\prime}}=\left(\begin{array}{l} 2 \\ 4 \\ 1 \end{array}\right)-\left(\begin{array}{l} 1 \\ 2 \\ 4 \end{array}\right)=\left(\begin{array}{l} 1 \\ 2 \\ -3 \end{array}\right)$ This vector is normal to $x+2 y-3 z=0$ M is $\left(1^{1 / 2}, 3,2^{1 / 2}\right)$ $\begin{aligned} & x+2 y-3 z=1 \frac{1}{2}+6-71 / 2=0 \\ & \Rightarrow M \text { lies in plane } \end{aligned}$	B1 B1 M1 A1 [4]	finding $\overrightarrow{A A^{\prime}}$ or $\overrightarrow{A^{\prime} A}$ by subtraction, subtraction must be seen B0 if $\overrightarrow{A A^{\prime}}, \overrightarrow{A^{\prime} A}$ confused Assume they have found $\overrightarrow{A A^{\prime}}$ if no label reference to normal or \boldsymbol{n}, or perpendicular to $x+2 y-3 z=0$, or statement that vector matches coefficients of plane and is therefore perpendicular, or showing AA' is perpendicular to two vectors in the plane for finding M correctly (can be implied by two correct coordinates) showing numerical subst of M in plane $=0$

	uesti	Answer	Marks	Guidance
8	(ii)	$\mathbf{r}=\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ -1 \\ 2\end{array}\right)=\left(\begin{array}{l}1+\lambda \\ 2-\lambda \\ 4+2 \lambda\end{array}\right)$ meets plane when $\begin{aligned} & 1+\lambda+2(2-\lambda)-3(4+2 \lambda)=0 \\ \Rightarrow \quad & -7-7 \lambda=0, \lambda=-1 \end{aligned}$ So B is $(0,3,2)$ $\overrightarrow{\mathrm{AB}}=\left(\begin{array}{l} 0 \\ 3 \\ 2 \end{array}\right)-\left(\begin{array}{l} 2 \\ 4 \\ 1 \end{array}\right)=\left(\begin{array}{l} -2 \\ -1 \\ 1 \end{array}\right)$ Eqn of line $A^{\prime} B$ is $\mathbf{r}=\left(\begin{array}{l}2 \\ 4 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right)$	M1 A1 A1 M1 B1 ft A1 ft [6]	subst of $\mathbf{A B}$ in the plane cao or $\overrightarrow{B A^{\prime}}$, ft only on their B (condone $\overrightarrow{A^{\prime} B}$ used as $\overrightarrow{B A^{\prime}}$ or no label) (can be implied by two correct coordinates) $\begin{aligned} & \left(\begin{array}{l} 2 \\ 4 \\ 1 \end{array}\right) \text { or their } \mathrm{B}+\ldots \ldots \\ & \ldots \lambda \times \text { their } \overrightarrow{A^{\prime} B}\left(\text { or } \overrightarrow{B A^{\prime}}\right) \end{aligned}$ ft only their B correctly
8	(iii)	$\begin{aligned} & \text { Angle between }\left(\begin{array}{l} 1 \\ -1 \\ 2 \end{array}\right) \text { and }\left(\begin{array}{l} -2 \\ -1 \\ 1 \end{array}\right) \\ & \begin{aligned} \Rightarrow \quad \cos \theta & =\frac{1 \cdot(-2)+(-1) \cdot(-1)+2.1}{\sqrt{6} \cdot \sqrt{6}} \\ & =1 / 6 \end{aligned} \\ & \Rightarrow \quad \theta=80.4^{\circ} \end{aligned}$	M1 M1 A1 A1 [4]	correct vectors but ft their $\overrightarrow{A^{\prime} B}$.Allow say, $\left(\begin{array}{l}-1 \\ 1 \\ -2\end{array}\right)$ and/or $\left(\begin{array}{l}2 \\ 1 \\ -1\end{array}\right)$ condone a minor slip if intention is clear correct formula (including $\cos \theta$) for their direction vectors from (ii) condone a minor slip if intention is clear $\pm 1 / 6$ or 99.6° from appropriate vectors only soi Do not allow either A mark if the correct B was found fortuitously in (ii) cao or better

	Ques	Answer	Marks	Guidance
3	(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} \theta}{\mathrm{~d} x / \mathrm{d} \theta}=\frac{2 \cos 2 \theta}{\cos \theta}$ When $\theta=\pi / 6=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \cos (\pi / 3)}{\cos (\pi / 6)}$ $=\frac{1}{\sqrt{3} / 2}=\frac{2}{\sqrt{3}}$ OR $\begin{aligned} & y=2 x \sqrt{\left(1-x^{2}\right)} \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=-2 x^{2}\left(1-x^{2}\right)^{-1 / 2}+2\left(1-x^{2}\right)^{1 / 2} \end{aligned}$ $\begin{aligned} & \text { at } \theta=\pi / 6, \sin \pi / 6=1 / 2 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-2}{4}\left(1-\frac{1}{4}\right)^{-1 / 2}+2\left(\frac{3}{4}\right)^{1 / 2}=\frac{2}{\sqrt{3}} \end{aligned}$	M1 A1 DM1 A1 M1 A1 DM1 A1 [4]	their $\mathrm{d} y / \mathrm{d} \theta /$ their $\mathrm{d} x / \mathrm{d} \theta$ www correct (can isw) subst $\theta=\pi / 6$ in theirs oe exact only, www (but not $1 / \sqrt{ } 3 / 2$) full method for differentiation including product rule and function of a function oe oe cao (condone lack of consideration of sign) subst $\sin \pi / 6=1 / 2$ in theirs oe ,exact only, www (but not $1 / \sqrt{ } 3 / 2$)
3	(ii)	$\begin{aligned} & y=\sin 2 \theta=2 \sin \theta \cos \theta \\ & \Rightarrow \quad y^{2}=4 \sin ^{2} \theta \cos ^{2} \theta=4 x^{2}\left(1-x^{2}\right) \\ & =4 x^{2}-4 x^{4} * \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	using $\sin 2 \theta=2 \sin \theta \cos \theta$ using $\cos ^{2} \theta=1-\sin ^{2} \theta$ to eliminate $\cos \theta$ AG need to see sufficient working or A0.

Question			Answer	Marks	Guidance
4	(a)		$\begin{aligned} & V=\int_{0}^{2} \pi y^{2} \mathrm{~d} x=\int_{0}^{2} \pi\left(1+\mathrm{e}^{2 x}\right) \mathrm{d} x \\ & =\pi\left[x+\frac{1}{2} \mathrm{e}^{2 x}\right]_{0}^{2} \\ & =\pi\left(2+1 / 2 \mathrm{e}^{4}-1 / 2\right) \\ & =1 / 2 \pi\left(3+\mathrm{e}^{4}\right) \end{aligned}$	M1 B1 DM1 A1 [4]	$\int_{0}^{2} \pi\left(1+\mathrm{e}^{2 x}\right) \mathrm{d} x$ limits must appear but may be later condone omission of $d x$ if intention clear $\left[x+\frac{1}{2} \mathrm{e}^{2 x}\right] \quad$ independent of π and limits dependent on first M1.Need both limits substituted in their integral of the form $a x+b e^{2 x}$, where a, b non-zero constants. Accept answers including e^{0} for M1. Condone absence of π for M1 at this stage cao exact only
4	(b)	(i)	$\begin{aligned} x & =0, y=1.4142 ; x=2, y=7.4564 \\ A & =0.5 / 2\{(1.4142+7.4564) \\ & =6.926 \quad+2(1.9283+2.8964+4.5919)\} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	$1.414,7.456$ or better correct formula seen (can be implied by correct intermediate step eg 27.7038../4) 6.926 or 6.93 (do not allow more dp)
4	(b)	(ii)	8 strips: 6.823, 16 strips: 6.797 Trapezium rule overestimates this area, but the overestimate gets less as the no of strips increases.	B1 [1]	oe

	Question	Answer	Marks	Guidance
5		$\begin{aligned} & 2 \sec ^{2} \quad \theta=5 \tan \theta \\ & \Rightarrow \quad 2\left(1+\tan ^{2} \theta\right)=5 \tan \theta \\ & \Rightarrow \quad 2 \tan ^{2} \theta-5 \tan \theta+2=0 \\ & \Rightarrow \quad(2 \tan \theta-1)(\tan \theta-2)=0 \\ & \Rightarrow \quad \tan \theta=1 / 2 \text { or } 2 \\ & \Rightarrow \quad \theta=0.464, \\ & \end{aligned} \quad 1.107 .$ OR $2 / \cos ^{2} \theta=5 \sin \theta / \cos \theta$ $\begin{aligned} & \Rightarrow 2 \cos \theta=5 \sin \theta \cos ^{2} \theta, \cos \theta \neq 0 \\ & \Rightarrow \cos \theta(2-5 \sin \theta \cos \theta)=0 \\ & \Rightarrow \cos \theta=0, \text { or } \sin 2 \theta=0.8 \\ & \Rightarrow \sin 2 \theta=0.8 \\ & \Rightarrow 2 \theta=0.9273 \text { or } 2.2143 \\ & \Rightarrow \theta=0.464 \end{aligned}$ 1.107	M1 A1 M1 A1 A1 A1 M1 A1 M1 A1 A1 A1 [6]	$\sec ^{2} \theta=1+\tan ^{2} \theta$ used correct quadratic oe solving their quadratic for $\tan \theta$ (follow rules for solving as in Question 1 [*,*] www first correct solution (or better) second correct solution (or better) and no others in the range Ignore solutions outside the range. SC A1 for both 0.46 and 1.11 SC A1 for both 26.6° and 63.4° (or better) Do not award SCs if there are extra solutions in range. using both $\sec =1 / \cos$ and $\tan =\sin / \cos$ correct one line equation $2-5 \sin \theta \cos \theta=0$ or $2 \cos \theta=5 \sin \theta \cos ^{2} \theta$ oe (or common denominator). Do not need $\cos \theta \neq 0$ at this stage. using $\sin 2 \theta=2 \sin \theta \cos \theta$ oe eg $2=5 \sin \theta \sqrt{ }\left(1-\sin ^{2} \theta\right)$ and squaring $\sin 2 \theta=0.8 \quad$ or, say, $25 \sin ^{4} \theta-25 \sin ^{2} \theta+4=0$ first correct solution (or better) second correct solution (or better) and no others in range Ignore solutions outside the range SCs as above

Question		Answer	Marks	Guidance	
6	(i)	$\begin{aligned} & \mathrm{AC}=\operatorname{cosec} \theta \\ & \Rightarrow \quad \mathrm{AD}=\operatorname{cosec} \theta \sec \varphi \end{aligned}$	M1 A1 [2]	or $1 / \sin \theta$ oe but not if a fraction within a fraction	
6	(ii)	$\begin{aligned} & \mathrm{DE}=\mathrm{AD} \sin (\theta+\varphi) \\ & =\operatorname{cosec} \theta \sec \varphi \sin (\theta+\varphi) \\ & =\operatorname{cosec} \theta \sec \varphi(\sin \theta \cos \varphi+\cos \theta \sin \varphi) \\ & =\frac{\sin \theta \cos \varphi+\cos \theta \sin \varphi}{\sin \theta \cos \varphi} \\ & =1+\frac{\cos \theta}{\sin \theta} \frac{\sin \varphi}{\cos \varphi} \\ & =1+\tan \varphi / \tan \theta * \end{aligned}$ OR equivalent, $\begin{aligned} \text { eg from } \mathrm{DE} & =\mathrm{CB}+\mathrm{CD} \cos \theta \\ & =1+\mathrm{CD} \cos \theta \\ & =1+\mathrm{AD} \sin \varphi \cos \theta \\ & =1+\operatorname{cosec} \theta \sec \varphi \sin \varphi \cos \theta \\ & =1+\tan \varphi / \tan \theta^{*} \end{aligned}$	M1 M1 A1 M1 M1 A1 [3]	$\mathrm{AD} \sin (\theta+\varphi)$ with substitution for their AD correct compound angle formula used Do not award both M marks unless they are part of the same method. (They may appear in either order.) simplifying using $\tan =\sin /$ cos. A0 if no intermediate step as AG from triangle formed by using X on DE where CX is parallel to BE to get $\mathrm{DX}=\mathrm{CD} \cos \theta$ and $\mathrm{CB}=1$ (oe trigonometry) substituting for both $\mathrm{CD}=\mathrm{AD} \sin \varphi$ and their AD oe to reach an expression for DE in terms of θ and φ only (M marks must be part of same method) AG simplifying to required form	
7	(i)	$\mathrm{DE}=\sqrt{ }\left[(-5)^{2}+0^{2}+1^{2}\right]=\sqrt{ } 26$ $\begin{aligned} & \cos \theta=5 / \sqrt{ } 26 \text { oe } \\ & \Rightarrow \quad \theta=11.3^{\circ} \end{aligned}$	M1 A1 M1 A1 [4]	oe oe using scalar products eg $-5 \mathbf{i}+\mathbf{k}$ with \mathbf{i} oe or better (or 168.7°). Allow radians.	

	Ques	Answer	Marks	Guidance
7	(ii)	$\begin{aligned} & \overrightarrow{\mathrm{AE}}=\left(\begin{array}{l} 1 \\ 4 \\ 3 \end{array}\right), \overrightarrow{\mathrm{ED}}=\left(\begin{array}{l} 5 \\ 0 \\ -1 \end{array}\right) \\ & \left(\begin{array}{l} 1 \\ 4 \\ 3 \end{array}\right) \cdot\left(\begin{array}{l} 1 \\ -4 \\ 5 \end{array}\right)=1-16+15=0 \\ & \left(\begin{array}{l} 5 \\ 0 \\ -1 \end{array}\right) \cdot\left(\begin{array}{l} 1 \\ -4 \\ 5 \end{array}\right)=5+0-5=0 \\ & \Rightarrow \quad \mathbf{i}-4 \mathbf{j}+5 \mathbf{k} \text { is normal to AED } \\ & \Rightarrow \quad \text { eqn of AED is }\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \cdot\left(\begin{array}{l} 1 \\ -4 \\ 5 \end{array}\right)=\left(\begin{array}{l} 0 \\ -4 \\ 0 \end{array}\right) \cdot\left(\begin{array}{l} 1 \\ -4 \\ 5 \end{array}\right) \\ & \Rightarrow \quad x-4 y+5 z=16 \end{aligned}$ $\text { B lies in plane if } 8-4(-a)+5.0=16$ $\Rightarrow \quad a=2$	B1 B1 B1 M1 A1 M1 A1 [7]	two relevant direction vectors (or $6 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}$ oe) scalar product with a direction vector in the plane (including evaluation and $=0$) (OR M1 forms vector cross product with at least two correct terms in solution) scalar product with second direction vector, with evaluation. (following OR above, A1 all correct ie a multiple of $\mathbf{i}-4 \mathbf{j}+5 \mathbf{k}$) (NB finding only one direction vector and its scalar product is B1 only.) for $x-4 y+5 z=c$ oe M1A0 for $\mathbf{i}-4 \mathbf{j}+5 \mathbf{k}=16$ allow M1 for subst in their plane or if found from say scalar product of normal with vector EB can also get M1A1 For first five marks above SC1, if states, 'if $\mathbf{i}-4 \mathbf{j}+5 \mathbf{k}$ is normal then of form $x-4 y+5 z=\mathbf{c}$ ' and substitutes one coordinate gets M1A1, then substitutes other two coordinates A2 (not A1,A1).Then states so $\left(\begin{array}{l}1 \\ -4 \\ 5\end{array}\right)$ is normal can get B1 provided that there is a clear argument ie M1A1A2B1. Without a clear argument this is B0. SC2, if finds two relevant vectors, B 1 and then finds equation of the plane from vector form, $r=a+\mu b+\lambda c$ gets B1. Eliminating parameters B1cao. If then states 'so $\left(\begin{array}{l}1 \\ -4 \\ 5\end{array}\right)$ is normal' can get B1 (4/5).

Question		Answer	Marks	Guidance
7	(iii)	D: $6+2=8$ B: $8+0=8$ C: $8+0=8$ $\Rightarrow \quad$ plane $B C D$ is $x+z=8$ Angle between $\mathbf{i}-4 \mathbf{j}+5 \mathbf{k}$ and $\mathbf{i}+\mathbf{k}$ is θ $\begin{aligned} & \Rightarrow \quad \cos \theta=(1 \times 1+(-4) \times 0+5 \times 1) / \sqrt{ } 42 \sqrt{ } 2=6 / \sqrt{ } 84 \\ & \Rightarrow \quad \theta=49.1^{\circ} \end{aligned}$	$\begin{gathered} \text { B2,1,0 } \\ \text { M1 } \end{gathered}$ M1 A1 A1 [6]	or any valid method for finding $x+z=8$ gets M1A1 between two correct relevant vectors complete method (including cosine) (for M1 ft their normal(s) to their plane(s)) allow correct substitution or $\pm 6 / \sqrt{84}$, correct only or 0.857 radians (or better) acute only
8	(i)	$h=20$, stops growing	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	AG need interpretation
	(ii)	$\begin{aligned} & h=20-20 \mathrm{e}^{-t / 10} \\ & \mathrm{~d} h / \mathrm{d} t=2 \mathrm{e}^{-t / 10} \\ & 20 \mathrm{e}^{-t / 10}=20-20\left(1-\mathrm{e}^{-t / 10}\right)=20-h \\ & =10 \mathrm{~d} h / \mathrm{d} t \end{aligned}$ when $t=0, h=20(1-1)=0$ OR verifying by integration $\begin{aligned} & \int \frac{d h}{20-h}=\int \frac{d t}{10} \\ & \Rightarrow-\ln (20-h)=0.1 t+c \\ & h=0, t=0, \Rightarrow c=-\ln 20 \\ & \Rightarrow \ln (20-h)=-0.1 t+\ln 20 \\ & \Rightarrow \ln \left(\frac{20-h}{20}\right)=-0.1 t \\ & \Rightarrow 20-h=20 e^{-0.1 t} \\ & \Rightarrow h=20\left(1-e^{-0.1 t}\right) \end{aligned}$	M1A1 M1 A1 B1 M1 A1 B1 M1 A1 [5]	differentiation (for M1 need $k \mathrm{e}^{-t / 10}, k$ const) oe eg $20-h=20-20\left(1-\mathrm{e}^{-t / 10}\right)=20 \mathrm{e}^{-t / 10}$ $=10 \mathrm{~d} h / \mathrm{d} t$ (showing sides equivalent) initial conditions sep correctly and intending to integrate correct result (condone omission of c , although no further marks are possible) condone $\ln (\mathrm{h}-20)$ as part of the solution at this stage constant found from expression of correct form (at any stage) but B0 if say $c=\ln (-20)($ found using $\ln (h-20))$ combining logs and anti-logging (correct rules) correct form (do not award if B0 above)

Question		Answer	Marks	Guidance
8	(iii)	$\begin{aligned} & \frac{200}{(20+h)(20-h)}=\frac{A}{20+h}+\frac{B}{20-h} \\ & \Rightarrow \quad 200=A(20-h)+B(20+h) \\ & h=20 \Rightarrow 200=40 B, B=5 \\ & h=-20 \Rightarrow 200=40 A, A=5 \\ & 200 \mathrm{~d} h / \mathrm{d} t=400-h^{2} \\ & \Rightarrow \quad \int \frac{200}{400-h^{2}} d h=\int d t \\ & \Rightarrow \quad \int\left(\frac{5}{20+h}+\frac{5}{20-h}\right) d h=\int d t \\ & \Rightarrow \quad 5 \ln (20+h)-5 \ln (20-h)=t+c \\ & \text { When } t=0, h=0 \Rightarrow 0=0+c \Rightarrow c=0 \\ & \Rightarrow \quad 5 \ln \frac{20+h}{20-h}=t \\ & \Rightarrow \quad \frac{20+h}{20-h}=e^{t / 5} \\ & \Rightarrow \quad 20+h=(20-h) \mathrm{t}^{t / 5}=20 \mathrm{e}^{t / 5}-h \mathrm{e}^{t / 5} \\ & \Rightarrow \quad h+h \mathrm{e}^{t / 5}=20 \mathrm{e}^{t / 5}-20 \\ & \Rightarrow \quad h\left(\mathrm{e}^{t / 5}+1\right)=20\left(\mathrm{e}^{t / 5}-1\right) \\ & \Rightarrow \quad h=\frac{20\left(\mathrm{e}^{t / 5}-1\right)}{\mathrm{e}^{t / 5}+1} \\ & \Rightarrow \quad h=\frac{20\left(1-\mathrm{e}^{-t / 5}\right)}{1+\mathrm{e}^{-t / 5}} * \end{aligned}$	M1 A1 A1 M1 A1 B1 M1 DM1 A1 [9]	cover up, substitution or equating coeffs separating variables and intending to integrate (condone sign error) substituting partial fractions ft their A, B, condone absence of c, Do not allow $\ln (\mathrm{h}-20)$ for A1. cao need to show this. \boldsymbol{c} can be found at any stage. $\mathbf{N B} \boldsymbol{c}=\ln (-\mathbf{1})($ from $\ln (h-20))$ or similar scores B0. anti-logging an equation of the correct form. Allow if $c=0$ clearly stated (provided that $c=0$) even if B mark is not awarded, but do not allow if c omitted. Can ft their c. making h the subject, dependent on previous mark NB method marks can be in either order, in which case the dependence is the other way around.(In which case, $20+h$ is divided by $20-h$ first to isolate h). AG must have obtained B1 (for c) in order to obtain final A1.
8	(iv)	As $t \rightarrow \infty, h \rightarrow 20$. So long-term height is 20 m .	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	WWW
8	(v)	$\begin{aligned} & 1^{\text {st }} \text { model } h=20\left(1-\mathrm{e}^{-0.1}\right)=1.90 . . \\ & 2^{\text {nd }} \text { model } h=20\left(\mathrm{e}^{1 / 5}-1\right) /\left(\mathrm{e}^{1 / 5}+1\right)=1.99 . . \end{aligned}$ so $2^{\text {nd }}$ model fits data better	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { B1 dep } \\ \text { [3] } \end{gathered}$	$\begin{aligned} & \text { Or } 1^{\text {st }} \text { model } h=2 \text { gives } t=1.05 . . \\ & 2^{\text {nd }} \text { model } h=2 \text { gives } t=1.003 . . \end{aligned}$ dep previous B1s correct

Question		Answer	Marks	Guidance	
5		The 10 routes shown from $(0,0)$ to $(3,2)$ each continue in one way via $(4,2)$ to $(4,3)$ and each continue in one way via $(3,3)$ to $(4,3)$ Hence 20	$\begin{aligned} & \text { B2 } \\ & {[2]} \end{aligned}$		Or, the 35 all pass through either $20(3,3)$ or $15(4,2)$. 10 of the 20 at $(3,3)$ come from $(3,2)$ [and the rest from $(2,3)$] 10 of the 15 at $(4,2)$ come from $(3,2)$ [and the rest from $(4,1)$] So $10+10=20$ are from $(3,2)$ oe
6	(i)	$\begin{aligned} & (-0.7,5.3) \\ & (-0.7,0.7) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$		SC B1 for ($y=$) 5.3 and 0.7.
6	(ii)		B1 [1]	A square with straight edges as shown with a vertex at $(2,2)$. (and nothing more)	
7	(i)	B must lie on one of the two axes	B1 [1]	oe, say, horizontal and vertical lines from (0,0).	Do not accept a list of points unless an overall statement that includes all points is given (not just integers).

Question		Answer	Marks	Guidance	
7	(ii)		B1	oe	As (i)
or on line $y=-x$	B1				

	Ques	Answer	Marks	Guidance
1	(i)	$\begin{aligned} & \frac{x}{(1+x)(1-2 x)}=\frac{A}{1+x}+\frac{B}{1-2 x} \\ & \Rightarrow \quad x=A(1-2 x)+B(1+x) \\ & x=1 / 2 \Rightarrow 1 / 2=B(1+1 / 2) \Rightarrow B=1 / 3 \\ & x=-1 \Rightarrow-1=3 A \Rightarrow A=-1 / 3 \end{aligned}$	M1 A1 A1 [3]	expressing in partial fractions of correct form (at any stage) and attempting to use cover up, substitution or equating coefficients Condone a single sign error for M1 only. www cao www cao (accept $\mathrm{A} /(1+\mathrm{x})+\mathrm{B} /(1-2 \mathrm{x}), \mathrm{A}=-1 / 3, \mathrm{~B}=1 / 3$ as sufficient for full marks without needing to reassemble fractions with numerical numerators)

Question		Answer	Marks	Guidance
1	(ii)	$\begin{aligned} & \frac{x}{(1+x)(1-2 x)}=\frac{-1 / 3}{1+x}+\frac{1 / 3}{1-2 x} \\ & =\frac{1}{3}\left[(1-2 x)^{-1}-(1+x)^{-1}\right] \\ & =\frac{1}{3}\left[1+(-1)(-2 x)+\frac{(-1)(-2)}{2}(-2 x)^{2}+\ldots-\left(1+(-1) x+\frac{(-1)(-2)}{2} x^{2}+\ldots\right)\right] \\ & =\frac{1}{3}\left[1+2 x+4 x^{2}+\ldots-\left(1-x+x^{2}+\ldots\right)\right] \end{aligned}$ $=\frac{1}{3}\left(3 x+3 x^{2}+\ldots\right)=x+x^{2}+\ldots \text { so } a=1 \text { and } b=1$	M1 A1 A1 A1	correct binomial coefficients throughout for first three terms of either $(1-2 x)^{-1}$ or $(1+x)^{-1}$ oe ie $1,(-1),(-1)(-2) / 2$, not $n C r$ form. Or correct simplified coefficients seen. $\begin{aligned} & 1+2 x+4 x^{2} \\ & 1-x+x^{2} \end{aligned}$ (or $1 / 3 /-1 / 3$ of each expression, ft their A / B) If $k\left(1-x+x^{2}\right)$ (A1) not clearly stated separately, condone absence of inner brackets (ie $1+2 x+4 x^{2}-1-x+x^{2}$) only if subsequently it is clear that brackets were assumed, otherwise A1A0. [ie $-1-x+x^{2}$ is A0 unless it is followed by the correct answer] Ignore any subsequent incorrect terms or from expansion of $x(1-2 x)^{-1}(1+x)^{-1}$ www cao
		OR $\begin{aligned} & x(1-x-2\left.x^{2}\right) \\ &=x\left(1-\left(x+2 x^{2}\right)\right) \\ & x\left(1+x+2 x^{2}+(-1)(-2)\left(x+2 x^{2}\right)^{2} / 2+\ldots \ldots \ldots\right) \\ &=x\left(1+x+2 x^{2}+x^{2} \ldots \ldots \ldots\right) \\ &=x+x^{2} \ldots . . \text { so } a=1 \text { and } b=1 \end{aligned}$	M1 A2 A1	correct binomial coefficients throughout for (1-(x+2x2)) oe (ie $1,-1$), at least as far as necessary terms ($1+\mathrm{x}$) (NB third term of expansion unnecessary and can be ignored) $x(1+x) \text { www }$ www cao
		Valid for $-1 / 2<x<1 / 2$ or $\|x\|<1 / 2$	B1 [5]	independent of expansion. Must combine as one overall range. condone $\leq \mathrm{s}$ (although incorrect) or a combination. Condone also, say $-1 / 2<\|x\|<1 / 2$ but not $x<1 / 2$ or $-1<2 x<1$ or $-1 / 2>x>1 / 2$

	Question	Answer	Marks	Guidance
3		$\tan 45^{\circ}=1 / 1=1^{*}$ $\begin{aligned} & \tan 75^{\circ}=\tan \left(45^{\circ}+30^{\circ}\right) \\ & =\frac{\tan 45+\tan 30}{1-\tan 45 \tan 30}=\frac{1+1 / \sqrt{3}}{1-1 / \sqrt{3}} \\ & =\frac{1+\sqrt{3}}{-1+\sqrt{3}} \\ & =\frac{(1+\sqrt{3})^{2}}{3-1} \end{aligned}$ $\left(\mathrm{oe} \mathrm{eg} \frac{3+\sqrt{3}}{3-\sqrt{3}}=\frac{(3+\sqrt{3})^{2}}{9-3}\right)$ $=\frac{(3+2 \sqrt{3}+1)}{3-1}=2+\sqrt{3} *$	B1 B1 M1 A1 M1 M1 A1 [7]	For both B marks AG so need to be convinced and need triangles but further explanation need not be on their diagram. Any given lengths must be consistent. Need $\sqrt{ } 2$ or indication that triangle is isosceles oe Need all three sides oe use of correct compound angle formula with $45^{\circ}, 30^{\circ}$ soi substitution in terms of $\sqrt{ } 3$ in any correct form eliminating fractions within a fraction (or rationalising, whichever comes first) provided compound angle formula is used as $\tan (A+B)=\tan (A \pm B) /(1 \pm \tan A \tan B)$. rationalising denominator (or eliminating fractions whichever comes second) correct only, AG so need to see working

	Questi	Answer	Marks	Guidance
4	(i)	$\mathbf{r}=\left(\begin{array}{l} 0 \\ 1 \\ 3 \end{array}\right)+\ldots$ $\ldots+\lambda\left(\begin{array}{l} -2 \\ 1 \\ 2 \end{array}\right)$	B1 B1 [2]	need \mathbf{r} (or another letter) $=$ or $\left(\begin{array}{c}x \\ y \\ z\end{array}\right)_{\text {for first B1 }}$ NB answer is not unique eg $\mathbf{r}=\left(\begin{array}{l}-2 \\ 2 \\ 5\end{array}\right)+\mu\left(\begin{array}{l}2 \\ -1 \\ -2\end{array}\right)$ Accept $\mathbf{i} / \mathbf{j} / \mathbf{k}$ form and condone row vectors.
4	(ii)	$\begin{aligned} & x+3 y+2 z=4 \\ & \Rightarrow \quad-2 \lambda+3(1+\lambda)+2(3+2 \lambda)=4 \\ & \Rightarrow \quad 5 \lambda=-5, \lambda=-1 \end{aligned}$ so point of intersection is $(2,0,1)$	M1 A1 A1 [3]	substituting their line in plane equation (condone a slip if intention clear) www cao $\mathbf{N B} \boldsymbol{\lambda}$ is not unique as depends on choice of line in (i) www cao
4	(iii)	Angle between $-2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$ and $\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$ is θ where $\begin{aligned} & \cos \theta=\frac{-2 \times 1+1 \times 3+2 \times 2}{\sqrt{9} \sqrt{14}}=\frac{5}{3 \sqrt{14}} \\ & \Rightarrow \quad \theta=63.5^{\circ} \end{aligned}$	M1 M1 A1 [3]	Angle between $\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$ and their direction from (i) ft condone a single sign slip if intention clear correct formula (including cosine), with substitution, for these vectors condone a single numerical or sign slip if intention is clear www cao (63.5 in degrees (or better) or 1.109 radians or better)

	uest	Answer	Marks	Guidance
6	(i)	$\begin{aligned} & v \mathrm{~d} v / \mathrm{d} x+4 x=0 \\ & \int v \mathrm{~d} v=-\int 4 x \mathrm{~d} x \\ & 1 / 2 v^{2}=-2 x^{2}+c \end{aligned}$ When $x=1, v=4$, so $c=10$ so $\quad v^{2}=20-4 x^{2} *$	M1 A1 B1 A1 [4]	separating variables and intending to integrate oe condone absence of c. [Not immediate $\mathrm{v}^{2}=-4 \mathrm{x}^{2}(+\mathrm{c})$] finding c, must be convinced as AG, need to see at least the statement given here oe (condone change of c) AG following finding c convincingly Alternatively, SC $v^{2}=20-4 x^{2}$, by differentiation, $2 v \mathrm{~d} v / \mathrm{d} x=-8 x$ $v \mathrm{~d} v / \mathrm{d} x+4 x=0 \text { scores } \mathrm{B} 2$ if , in addition, they check the initial conditions a further B1 is scored (ie $16=20-4$). Total possible 3/4.
6	(ii)	$x=\cos 2 t+2 \sin 2 t$ when $t=0, x=\cos 0+2 \sin 0=1 *$ $v=\mathrm{d} x / \mathrm{d} t=-2 \sin 2 t+4 \cos 2 t$ $v=4 \cos 0-2 \sin 0=4^{*}$	B1 M1 A1 A1 [4]	AG need some justification differentiating, accept $\pm 2, \pm 4$ as coefficients but not $\pm 1, \pm 2$ and not $\pm 1 / 2, \pm 1$ from integrating cao www AG

Question		Answer	Marks	Guidance
6	(iii)	$\begin{aligned} & \cos 2 t+2 \sin 2 t=R \cos (2 t-\alpha)=R(\cos 2 t \cos \alpha+\sin 2 t \sin \alpha) \\ & R=\sqrt{ } 5 \\ & R \cos \alpha=1, R \sin \alpha=2 \\ & \tan \alpha=2 \\ & \alpha=1.107 \\ & x=\sqrt{ } 5 \cos (2 t-1.107) \\ & v=-2 \sqrt{ } 5 \sin (2 t-1.107) \end{aligned}$	B1 M1 M1 A1 A1	SEE APPENDIX 1 for further guidance or 2.24 or better (not \pm unless negative rejected) correct pairs soi correct method cao radians only, 1.11 or better (or multiples of π that round to 1.11) differentiating or otherwise, ft their numerical R, α (not degrees) required form SC B1 for $v=\sqrt{ } 20 \cos (2 t+0.464)$ oe
		EITHER $v^{2}=20 \sin ^{2}(2 t-\alpha)$ $20-4 x^{2}=20-20 \cos ^{2}(2 t-\alpha)$ $\begin{aligned} & =20\left(1-\cos ^{2}(2 t-\alpha)\right)=20 \sin ^{2}(2 t-\alpha) \\ \text { so } \quad v^{2} & =20-4 x^{2} \end{aligned}$	M1 A1	squaring their v (if of required form with same α as x), and x, and attempting to show $v^{2}=20-4 x^{2}$ ft their R, α (incl. degrees) [α may not be specified]. cao www (condone the use of over-rounded α (radians) or degrees)
		$\begin{aligned} & \text { OR multiplying out } v^{2}=(-2 \sin 2 t+4 \cos 2 t)^{2} \\ & =4 \sin ^{2} 2 t-16 \sin 2 t \cos 2 t+16 \cos ^{2} 2 t \\ & \text { and } 4 x^{2}=4\left(\cos ^{2} 2 t+4 \sin 2 t \cos 2 t+4 \sin ^{2} 2 t\right) \\ & =4 \cos ^{2} 2 t+16 \sin 2 t \cos 2 t+16 \sin ^{2} 2 t(\text { need middle term }) \\ & \text { and attempting to show that } \\ & \qquad v^{2}+4 x^{2}=4\left(\sin ^{2} 2 t+\cos ^{2} 2 t\right)+16\left(\cos ^{2} 2 t+\sin ^{2} 2 t\right) \\ & \quad=4+16=20\left(\text { or } 20-4 x^{2}=v^{2}\right) \text { oe } \end{aligned} \text { so } \quad v^{2}=20-4 x^{2} .4$	M1 A1 [7]	differentiating to find v (condone coefficient errors), squaring v and x and multiplying out (need attempt at middle terms) and attempting to show $v^{2}=20-4 x^{2}$

	Questi	Answer	Marks	Guidance
6	(iv)	$\begin{aligned} & x=\sqrt{ } 5 \cos (2 t-\alpha) \text { or otherwise } \\ & x \max =\sqrt{5} \\ & \text { when } \cos (2 t-\alpha)=1, \\ & 2 t-1.107=0 \\ & 2 t=1.107 \\ & t=0.55 \end{aligned}$	B1 M1 A1 [3]	ft their R oe (say by differentiation) ft their α in radians or degrees for method only cao (or answers that round to 0.554)
7	(i)	$\begin{aligned} & u=10, x=5 \ln 10=11.5 \\ & \text { so } \mathrm{OA}=5 \ln 10 \\ & \text { when } u=1 \text {, } \\ & y=1+1=2 \text { so } \mathrm{OB}=2 \\ & \text { When } u=10, y=10+1 / 10=10.1 \\ & \text { So } \mathrm{AC}=10.1 \end{aligned}$	M1 A1 M1 A1 A1 [5]	Using $u=10$ to find OA accept 11.5 or better Using $u=1$ to find OB or $u=10$ to find AC In the case where values are given in coordinates instead of $\mathrm{OA}=, \mathrm{OB}=, \mathrm{AC}=$, then give A 0 on the first occasion this happens but allow subsequent As. Where coordinates are followed by length eg $\mathrm{B}(0,2)$, length=2 then allow A1.

	Quest	Answer	Marks	Guidance
7	(ii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} u}{\mathrm{~d} x / d u}=\frac{1-1 / u^{2}}{5 / u} \\ & {\left[=\frac{u^{2}-1}{5 u}\right]} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	their $\mathrm{dy} / \mathrm{du} / \mathrm{dx} / \mathrm{du}$ Award A1 if any correct form is seen at any stage including unsimplified (can isw)
		EITHER $\begin{aligned} & \text { When } u=10, \mathrm{~d} y / \mathrm{d} x=99 / 50=1.98 \\ & \begin{aligned} \tan (90-\theta)=1.98 \Rightarrow \theta & =90-63.2 \\ & =26.8^{\circ} \end{aligned} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A2 } \end{aligned}$	substituting $\mathbf{u}=10$ in their expression or by geometry, say using a triangle and the gradient of the line 26.8°, or 0.468 radians (or better) cao SC M1M0A1A0 for 63.2° (or better) or 1.103 radians(or better)
		OR When $u=10, \mathrm{dy} / \mathrm{dx}=99 / 50=1.98$ $\tan (90-\theta)=99 / 50 \Rightarrow \tan \theta=50 / 99$ $\theta=26.8^{\circ}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A2 } \\ & {[6]} \end{aligned}$	allow use of their expression for M marks 26.8°, or 0.468 radians (or better) cao
7	(iii)	$\begin{aligned} & x=5 \ln u \Rightarrow x / 5=\ln u, u=\mathrm{e}^{x / 5} \\ & \Rightarrow \quad y=u+1 / u=\mathrm{e}^{x / 5}+\mathrm{e}^{-x 5} \end{aligned}$	M1 A1 [2]	Need some working Need some working as AG

Question		Answer	Marks	Guidance
7	(iv)	$\text { Vol of rev }=\int_{0}^{5 \ln 10} \pi y^{2} \mathrm{~d} x=\int_{0}^{5 \ln 10} \pi\left(e^{x / 5}+e^{-x / 5}\right)^{2} \mathrm{~d} x$	M1	need $\pi\left(e^{x / 5}+e^{-x / 5}\right)^{2}$ and $d x$ soi. Condone wrong limits or omission of limits for M1. Allow M1 if y prematurely squared as eg $\left(e^{2 x / 5}+e^{-2 x / 5}\right)$
		$=\int_{0}^{5 \ln 10} \pi\left(\mathrm{e}^{2 x / 5}+2+\mathrm{e}^{-2 x / 5}\right) \mathrm{d} x$	A1	including correct limits at some stage (condone 11.5 for this mark)
		$=\pi\left[\left(\frac{5}{2} \mathrm{e}^{2 x / 5}+2 x-\frac{5}{2} \mathrm{e}^{-2 x / 5}\right)\right]_{0}^{5 \ln 10}$	B1	$\left[\frac{5}{2} e^{2 x / 5}+2 x-\frac{5}{2} e^{-2 x / 5}\right]$ allow if no π and/or no limits or incorrect limits
		$=\pi(250+10 \ln 10-0.025-0)$	M1	substituting both limits (their OA and 0) in an expression of correct form ie $a e^{2 x / 5}+b e^{-2 x / 5}+c x, \quad a, b, c \neq 0$ and subtracting in correct order (- 0 is sufficient for lower limit) Condone absence of π for M1
		$=858$	A1	accept 273π and answers rounding to 273π or 858
				NB The integral can be evaluated using a change of variable to u. This involves changing $\mathrm{d} x$ to $(\mathrm{d} x / \mathrm{d} u) \mathrm{x} d u$. For completely correct work from this method award full marks. Partially correct solutions must include the change in $\mathrm{d} x$. If in doubt consult your TL.
				Remember to indicate second box has been seen even if it has not been used.

Question		Answer 10° north is B 1^{0} north is A 5^{0} south is D 15° south is C	Marks B2 [2]	Guidance	
3				All four answers correct SC B1 Any two answers correct	
4		$\begin{aligned} & \tan y=-\frac{1}{\tan \alpha} \cos (15 t) \\ & \alpha=23.44^{\circ}, y=60^{\circ}, t \text { is to be found } \\ & \cos (15 t)=-0.7509 \ldots \\ & 15 t=138.6737 \ldots \\ & t=9.2449 \ldots \end{aligned}$ Daylight hours are $2 \times 9.2449 \ldots=18.4898$... So 18.5 hours (to 3s.f.) OR Using $t=9$ $\alpha=23.44, t=9, y$ is to be found $\tan y=1.6309$.. $y=58.485^{\circ}$ so approx 60°	M1 A1 DM1 A1 M1 DM1 A2 [4]	substitute in formula and attempt to solve (as far as $15 t=$ invcos.......) oe accept 9.2 or better doubling, dependent on first M1 or approx 18 hours www (accept 18.4898,18.489,18.49,18.5 or 18.4 (from $2 x 9.2$),18.48) $t=18 / 2=9$ and substituted in formula and attempt to solve (as far as $y=$ inv tan constant) oe or $58.49^{\circ} / 58.5^{\circ}$ /approx 60° www	any reasonable accuracy or stating error is approx 0.49 oe any reasonable accuracy

Question		Answer $\alpha=-23.44 \times \cos \left(\frac{360}{365} \times(n+10)\right)$ On February 2nd, $n=31+2=33$ $\begin{aligned} & \alpha=-23.44 \times \cos \left(\frac{360}{365} \times 43\right) \\ & a=-17.31 \end{aligned}$	Marks	Gui	ance
5	(i)		B1 M1 A1 [3]	calculate $n=31+2=33$ (days in Jan + Feb) soi substitution of their $n+10$ in equation (3) and attempt to evaluate or -17.306 or rounds to -17.3	SC B1 condone 30+2 Where $n=31,32,33,34$ only NB $n=32+10$ gives -17.576 gaining B1M1A0
5	(ii)	$\begin{aligned} & \tan y=-\frac{1}{\tan \alpha} \cos (15 t) \\ & \tan 53=-\frac{1}{\tan (-17.306)} \times \cos (15 t) \\ & t=\frac{1}{15} \arccos (-\tan 53 \times \tan (-17.306)) \\ & t=4.3717 \end{aligned}$ Sunset is at 12 hrs +4 hours 22 minutes, and so $16: 22$ hrs	M1 DM1 A1 A1 [4]	use of their α in equation (4) making t the subject 4.37 or better cao	SC ft from - 17.576 Obtains A1ft for 4.343 (or 4.34) And then A1ft for 16:21 (or $16: 20$)

